385 research outputs found

    Investigation of Channel Interactions in Nested Hall Thruster

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143065/1/1.B36352.pd

    The relation between productivity and species diversity in temperate-arctic marine ecosystems

    Get PDF
    Energy variables, such as evapotranspiration, temperature, and productivity explain significant variation in the diversity of many groups of terrestrial plants and animals at local to global scales. Although the ocean represents the largest continuous habitat on earth with a vast spectrum of primary productivity and species richness, little is known about how productivity influences species diversity in marine systems. To search for general relationships between productivity and species richness in the ocean, we analyzed data from three different benthic marine ecosystems (epifaunal communities on subtidal rock walls, on navigation buoys in the Gulf of St. Lawrence, and Canadian Arctic macrobenthos) across local to continental spatial scales (1000 km) using a standardized proxy for productivity, satellite-derived chlorophyll a. Theoretically, the form of the function between productivity and species richness is either monotonically increasing or decreasing, or curvilinear (hump- or U-shaped). We found three negative linear and three hump-shaped relationships between chlorophyll a and species richness out of 10 independent comparisons. Scale dependence was suggested by more prevalent diversity-productivity relationships at smaller (local, landscape) than larger (regional, continental) spatial scales. Differences in the form of the functions were more closely allied with community type than with scale, as negative linear functions were restricted to sessile epifauna while hump-shaped functions occurred in Arctic macrobenthos (mixed epifauna, infauna). In two of the data sets, (St. Lawrence epifauna and Arctic macrobenthos) significant effects of chlorophyll a co-varied with the effects of salinity, suggesting that environmental stress as well as productivity influences diversity in these marine systems. The co-varying effect of salinity may commonly arise in broad-scale studies of productivity and diversity in marine ecosystems when attempting to sample the largest range of productivity, often encompassing a coastal-oceanic gradient

    The Death Domain Kinase RIP Protects Thymocytes from Tumor Necrosis Factor Receptor Type 2–induced Cell Death

    Get PDF
    Fas and the tumor necrosis factor receptor (TNFR)1 regulate the programmed cell death of lymphocytes. The death domain kinase, receptor interacting protein (rip), is recruited to the TNFR1 upon receptor activation. In vitro, rip−/− fibroblasts are sensitive to TNF-induced cell death due to an impaired nuclear factor κB response. Because rip−/− mice die at birth, we were unable to examine the effects of a targeted rip mutation on lymphocyte survival. To address the contribution of RIP to immune homeostasis, we examined lethally irradiated mice reconstituted with rip−/− hematopoietic precursors. We observed a decrease in rip−/− thymocytes and T cells in both wild-type C57BL/6 and recombination activating gene 1−/− irradiated hosts. In contrast, the B cell and myeloid lineages are unaffected by the absence of rip. Thus, the death domain kinase rip is required for T cell development. Unlike Fas-associated death domain, rip does not regulate T cell proliferation, as rip−/− T cells respond to polyclonal activators. However, rip-deficient mice contain few viable CD4+ and CD8+ thymocytes, and rip−/− thymocytes are sensitive to TNF-induced cell death. Surprisingly, the rip-associated thymocyte apoptosis was not rescued by the absence of TNFR1, but appears to be rescued by an absence of TNFR2. Taken together, this study implicates RIP and TNFR2 in thymocyte survival

    The Skyrme energy functional and low lying 2+ states in Sn, Cd and Te isotopes

    Full text link
    We study the predictive power of Skyrme forces with respect to low lying quadrupole spectra along the chains of Sn, Cd, and Te isotopes. Excitation energies and B(E2) values for the lowest quadrupole states are computed from a collective Schroedinger equation which as deduced through collective path generated by constraint Skyrme-Hartree-Fock (SHF) plus self-consistent cranking for the dynamical response. We compare the results from four different Skyrme forces, all treated with two different pairing forces (volume versus density-dependent pairing). The region around the neutron shell closure N=82 is very sensitive to changes in the Skyrme while the mid-shell isotopes in the region N<82 depend mainly on the adjustment of pairing. The neutron rich isotopes are most sensitive and depend on both aspects

    On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei

    Full text link
    The present paper establishes a link between pairing correlations in rotating nuclei and collective vortical modes in the intrinsic frame. We show that the latter can be embodied by a simple S-type coupling a la Chandrasekhar between rotational and intrinsic vortical collective modes. This results from a comparison between the solutions of microscopic calculations within the HFB and the HF Routhian formalisms. The HF Routhian solutions are constrained to have the same Kelvin circulation expectation value as the HFB ones. It is shown in several mass regions, pairing regimes, and for various spin values that this procedure yields moments of inertia, angular velocities, and current distributions which are very similar within both formalisms. We finally present perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.

    Riemann's theorem for quantum tilted rotors

    Full text link
    The angular momentum, angular velocity, Kelvin circulation, and vortex velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned with a principal axis or (2) lie in a principal plane of the inertia ellipsoid. In the second case, the ratios of the components of the Kelvin circulation to the corresponding components of the angular momentum, and the ratios of the components of the angular velocity to those of the vortex velocity are analytic functions of the axes lengths.Comment: 8 pages, Phys. Rev.

    Self-consistent anisotropic oscillator with cranked angular and vortex velocities

    Full text link
    The Kelvin circulation is the kinematical Hermitian observable that measures the true character of nuclear rotation. For the anisotropic oscillator, mean field solutions with fixed angular momentum and Kelvin circulation are derived in analytic form. The cranking Lagrange multipliers corresponding to the two constraints are the angular and vortex velocities. Self-consistent solutions are reported with a constraint to constant volume.Comment: 12 pages, LaTex/RevTex, Phys. Rev. C4
    • …
    corecore