641 research outputs found
One-loop Yukawas on Intersecting Branes
We calculate Yukawa interactions at one-loop on intersecting D6 branes. We
demonstrate the non-renormalization theorem in supersymmetric configurations,
and show how Yukawa beta functions may be extracted. In addition to the usual
logarithmic running, we find the power-law dependence on the infra-red cut-off
associated with Kaluza-Klein modes. Our results may also be used to evaluate
coupling renormalization in non-supersymmetric cases.Comment: 48 pages, 9 figures; minor corrections, JHEP styl
The twisted open string partition function and Yukawa couplings
We use the operator formalism to derive the bosonic contribution to the
twisted open string partition function in toroidal compactifications. This
amplitude describes, for instance, the planar interaction between g+1
magnetized or intersecting D-branes. We write the result both in the closed and
in the open string channel in terms of Prym differentials on the appropriate
Riemann surface. Then we focus on the g=2 case for a 2-torus. By factorizing
the twisted partition function in the open string channel we obtain an explicit
expression for the 3-twist field correlator, which is the main ingredient in
the computation of Yukawa couplings in D-brane phenomenological models. This
provides an alternative method for computing these couplings that does not rely
on the stress-energy tensor technique.Comment: 32 pages, 5 figures, Latex; v2: typos correcte
Coisotropic D8-branes and Model-building
Up to now chiral type IIA vacua have been mostly based on intersecting
D6-branes wrapping special Lagrangian 3-cycles on a CY three-fold. We argue
that there are additional BPS D-branes which have so far been neglected, and
which seem to have interesting model-building features. They are coisotropic
D8-branes, in the sense of Kapustin and Orlov. The D8-branes wrap 5-dimensional
submanifolds of the CY which are trivial in homology, but contain a worldvolume
flux that induces D6-brane charge on them. This induced D6-brane charge not
only renders the D8-brane BPS, but also creates D=4 chirality when two
D8-branes intersect. We discuss in detail the case of a type IIA Z2 x Z2
orientifold, where we provide explicit examples of coisotropic D8-branes. We
study the chiral spectrum, SUSY conditions, and effective field theory of
different systems of D8-branes in this orientifold, and show how the magnetic
fluxes generate a superpotential for untwisted Kahler moduli. Finally, using
both D6-branes and coisotropic D8-branes we construct new examples of MSSM-like
type IIA vacua.Comment: 63 pages, 11 figures. Typos corrected and comments adde
Orbifold resolutions with general profile
A very general class of resolved versions of the C/Z_N, T^2/Z_N and S^1/Z_2
orbifolds is considered and the free theory of 6D chiral fermions studied on
it. As the orbifold limit is taken, localized 4D chiral massless fermions are
seen to arise at the fixed points. Their number, location and chirality is
found to be independent on the detailed profile of the resolving space and to
agree with the result of hep-th/0409229, in which a particular resolution was
employed. As a consistency check of the resolution procedure, the massive
equation is numerically studied. In particular, for S^1/Z_2, the "resolved"
mass--spectrum and wave functions in the internal space are seen to correctly
reproduce the usual orbifold ones, as the orbifold limit is taken.Comment: 28 pages, 3 figures, typos corrected, references adde
Study of pinholes and nanotubes in AlInGaN films by cathodoluminescence and atomic force microscopy
Cathodoluminescence (CL) in the scanning electron microscope and atomic force microscopy (AFM) have been used to study the formation of pinholes in tensile and compressively strained AlInGaN films grown on Al2O3 substrates by plasma-induced molecular beam epitaxy. Nanotubes, pits, and V-shaped pinholes are observed in a tensile strained sample. CL images show an enhanced emission around the pits and a lower intensity at the V-shaped pinholes. Rounded pinholes appear in compressively strained samples in island-like regions with higher In concentration. The grain structure near the pinholes is resolved by AFM. (C) 2004 American Institute of Physics
Intersecting Brane Worlds at One Loop
We develop techniques for one-loop diagrams on intersecting branes. The
one-loop propagator of chiral intersection states on D6 branes is calculated
exactly and its finiteness is shown to be guaranteed by RR tadpole
cancellation. The result is used to demonstrate the expected softening of power
law running of Yukawa couplings at the string scale. We also develop methods to
calculate arbitrary N-point functions at one-loop, including those without
gauge bosons in the loop. These techniques are also applicable to heterotic
orbifold models.Comment: 35 pages, 3 figures; added reference, corrected typos, JHEP styl
- …
