203 research outputs found
Theory of quantum paraelectrics and the metaelectric transition
We present a microscopic model of the quantum paraelectric-ferroelectric
phase transition with a focus on the influence of coupled fluctuating phonon
modes. These may drive the continuous phase transition first order through a
metaelectric transition and furthermore stimulate the emergence of a textured
phase that preempts the transition. We discuss two further consequences of
fluctuations, firstly for the heat capacity, and secondly we show that the
inverse paraelectric susceptibility displays T^2 quantum critical behavior, and
can also adopt a characteristic minimum with temperature. Finally, we discuss
the observable consequences of our results.Comment: 5 pages, 2 figure
Dynamical spin-flip susceptibility for a strongly interacting ultracold Fermi gas
The Stoner model predicts that a two-component Fermi gas at increasing
repulsive interactions undergoes a ferromagnetic transition. Using the
random-phase approximation we study the dynamical properties of the interacting
Fermi gas. For an atomic Fermi gas under harmonic confinement we show that the
transverse (spin-flip) dynamical susceptibility displays a clear signature of
the ferromagnetic phase in a magnon peak emerging from the Stoner particle-hole
continuum. The dynamical spin susceptibilities could be experimentally explored
via spin-dependent Bragg spectroscopy.Comment: 4 pages, 3 figure
A repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism
Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the
most well-characterized phases of correlated Fermi systems. A recent experiment
has reported the first evidence for novel phase behavior on the repulsive side
of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting
recent theoretical studies to the atomic trap geometry, we show that an
adiabatic ferromagnetic transition would take place at a weaker interaction
strength than is observed in experiment. This discrepancy motivates a simple
non-equilibrium theory that takes account of the dynamics of magnetic defects
and three-body losses. The formalism developed displays good quantitative
agreement with experiment.Comment: 4 pages, 2 figure
Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance
We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi
gas with repulsive interactions and population imbalance. In a spatially
uniform system, we show that at zero temperature the transition to the
itinerant magnetic phase transforms from first to second order with increasing
population imbalance. Drawing on these results, we elucidate the phases present
in a trapped geometry, finding three characteristic types of behavior with
changing population imbalance. Finally, we outline the potential experimental
implications of the findings.Comment: 10 pages, 4 figures, typos added, references adde
Quantum condensation in electron-hole bilayers with density imbalance
We study the two-dimensional spatially separated electron-hole system with
density imbalance at absolute zero temperature. By means of the mean-field
theory, we find that the Fulde-Ferrell state is fairly stabilized by the order
parameter mixing effect.Comment: 5 pages, 5 figure
Upper critical field in superconductors near ferromagnetic quantum critical points; UCoGe
We study the strong-coupling superconductivity near ferromagnetic quantum
critical points, mainly focusing on the upper critical fields . Based
on our simple model calculations, we discuss experimentally observed unusual
behaviors of in a recently discovered ferromagnetic superconductor
UCoGe. Especially, the large anisotropy between -axis and
-axis, and the strong-coupling behaviors in
are investigated. We also examine effects of
non-analytic corrections in the spin susceptibility on the superconductivity,
which can arise from effective long range interactions due to particle-hole
excitations.Comment: Proceedings of ICHE2010, Toky
Coherent multi-flavour spin dynamics in a fermionic quantum gas
Microscopic spin interaction processes are fundamental for global static and
dynamical magnetic properties of many-body systems. Quantum gases as pure and
well isolated systems offer intriguing possibilities to study basic magnetic
processes including non-equilibrium dynamics. Here, we report on the
realization of a well-controlled fermionic spinor gas in an optical lattice
with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived
intrinsic spin oscillations and investigate the transition from two-body to
many-body dynamics. The latter results in a spin-interaction driven melting of
a band insulator. Via an external magnetic field we control the system's
dimensionality and tune the spin oscillations in and out of resonance. Our
results open new routes to study quantum magnetism of fermionic particles
beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure
Solitary waves in the Nonlinear Dirac Equation
In the present work, we consider the existence, stability, and dynamics of
solitary waves in the nonlinear Dirac equation. We start by introducing the
Soler model of self-interacting spinors, and discuss its localized waveforms in
one, two, and three spatial dimensions and the equations they satisfy. We
present the associated explicit solutions in one dimension and numerically
obtain their analogues in higher dimensions. The stability is subsequently
discussed from a theoretical perspective and then complemented with numerical
computations. Finally, the dynamics of the solutions is explored and compared
to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger
equation. A few special topics are also explored, including the discrete
variant of the nonlinear Dirac equation and its solitary wave properties, as
well as the PT-symmetric variant of the model
- …
