16 research outputs found

    The combination of calcium ionophore A23187 and GM-CSF can safely salvage aged human unfertilized oocytes after ICSI

    No full text
    Purpose: Artificial oocyte activation using calcium ionophores and enhancement of embryonic developmental potential by the granulocyte-macrophage colony-stimulating factor (GM-CSF) have already been reported. In this study, we evaluated the synergistic effect of these two methods on aged human unfertilized oocytes after intracytoplasmic sperm injection (ICSI). Then, we cultured the resulting embryos to the blastocyst stage and screened them for chromosomal abnormalities, to assess the safety of this protocol. Methods: Aged human oocytes deemed unfertilized after ICSI were activated, either by briefly applying the calcium ionophore A23187 alone (group A) or by briefly applying the ionophore and then supplementing the culture medium with recombinant human GM-CSF (rhGM-CSF) (group B). Next, the development was monitored in a time-lapse incubator system, and ploidy was analyzed by array comparative genomic hybridization (aCGH), after whole embryo biopsy and whole genome amplification. Differences between oocytes and resulting embryos in both groups were evaluated statistically. Results: Oocytes unfertilized after ICSI can be activated with the calcium ionophore A23187 to show two pronuclei and two polar bodies. Addition of rhGM-CSF in the culture medium of A23187-activated oocytes enhances their cleaving and blastulation potential and results in more euploid blastocysts compared to the culture medium alone. Conclusions: This study shows that activating post-ICSI aged human unfertilized oocytes with a combination of a calcium ionophore and a cytokine can produce good-morphology euploid blastocysts. © 2016, Springer Science+Business Media New York

    Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis

    Get PDF
    Organisation of chromosome territories in interphase nuclei has been studied in many systems and positional alterations have been associated with disease phenotypes (e.g. laminopathies, cancer) in somatic cells. Altered nuclear organisation is also reported in developmental processes such as mammalian spermatogenesis where a "chromocentre" model is proposed with the centromeres and sex chromosomes repositioning to the nuclear centre. The purpose of this study was to test the hypothesis that alterations in nuclear organisation of human spermatozoa are associated with defects upstream in spermatogenesis (as manifest in certain infertility phenotypes). The nuclear address of (peri-) centromeric loci for 18 chromosomes (1-4, 6-12, 15-18, 20, X and Y) was assayed in 20 males using established algorithms for 3D extrapolations of 2D data. The control group comprised 10 fertile sperm donors while the test group was 10 patients with severely compromised semen parameters including high sperm aneuploidy. All loci examined in the control group adopted defined, interior positions thus providing supporting evidence for the presence of a chromocentre and interior sex chromosome territories. In the test group however there were subtle alterations in the nuclear address for certain centromeres in individual patients and, when all patient results were pooled, some different nuclear addresses were observed for chromosomes 3, 6, 12 and 18. Considering the extensive impairment of spermatogenesis in the test group (evidenced by compromised semen parameters and increased chromosome abnormalities), the observed differences in nuclear organisation for centromeric loci compared to the controls were modest. A defined pattern of nuclear reorganisation of centromeric loci in sperm heads therefore appears to be a remarkably robust process, even if spermatogenesis is severely compromised
    corecore