46 research outputs found

    Reproducibility of an HPLC-ESI-MS/MS Method for the Measurement of Stable-Isotope Enrichment of in Vivo-Labeled Muscle ATP Synthase Beta Subunit

    Get PDF
    We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R2 = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase134-143 peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase134-143 peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R2 = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase134-143 peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase134-143 peptide

    Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man.

    No full text
    Triglycerides (TG) are synthesized in the liver principally from two sources of fatty acids (FA): FA synthesized de novo in the liver and preformed FA. We have measured the rate of secretion of de novo synthesized FA and total secretion of FA bound to VLDL-TG in healthy men (n = 5) in the basal state, and after 1 (day 1) and 4 d (day 4) of a hypercaloric carbohydrate diet (approximately 2.5 times energy expenditure) that generated a moderate endogenous hyperinsulinemia (plasma insulin approximately 60 microU/ml). Prolonged carbohydrate hyperalimentation/hyperinsulinemia increased plasma VLDL-TG approximately 10-fold in part due to a 3.4-fold increase in total VLDL-TG secretion rate (basal state = 72+/-23, day 4 = 242+/-78 micromol TG/kg/d). Although the secretion of de novo synthesized FA increased throughout the study (basal state = 1.1+/-0.4, day 1 = 15.9+/-7.9, day 4 = 50.0+/-18.8 micromol TG/ kg/d), the 2.7-fold increase in secretion rate of preformed FA (basal state = 70+/-23, day 4 = 191+/-57 micromol TG/kg/d) quantitatively contributed the most to total VLDL-TG secretion rate. Decreased catabolism of VLDL-TG also contributed to the hypertriglyceridemia as reflected by an approximately fourfold decrease in both fractional turnover rate (basal state = 9.2+/-3.8, day 1 = 2.1+/-0.2, day 4 = 2.1+/-0.3 pools/d) and rate of clearance (basal state = 0.35+/-0.08, day 1 = 0.11+/-0.01, day 4 = 0.09+/-0.01 liter/kg/d) of VLDL-TG. Thus, the primary difference between 1 and 4 d of hyperinsulinemia in conjunction with carbohydrate hyperalimentation is the increase in hepatic secretion of preformed FA into VLDL-TG

    DOES GENDER AFFECT MORTALITY AFTER BURNS?

    Full text link

    ACUTE HYPERCALCIURIA FOLLOWING BURN INJURY.

    Full text link

    Insulin therapy in burn patients does not contribute to hepatic triglyceride production.

    No full text
    Lipid kinetics were studied in six severely burned patients who were treated with a high dose of exogenous insulin plus glucose to promote protein metabolism. The patients were 20+/-2-yr-old (SD) with 63+/-8% total body surface area burned. They were studied in a randomized order (a) in the fed state on the seventh day of a control period (C) of continuous high-carbohydrate enteral feeding alone, and (b) on the seventh day of enteral feeding plus exogenous insulin (200 pmol/h = 28 U/h) with extra glucose given as needed to avoid hypoglycemia (I+G). Despite a glucose delivery rate approximately 100% in excess of energy requirements, the following lipid parameters were unchanged: (a) total hepatic VLDL triglyceride (TG) secretion rate (0.165+/-0.138 [C] vs. 0.154+/- 0.138 mmol/kg . d-1 [I+G]), (b) plasma TG concentration (1.58+/-0.66 [C] vs. 1. 36+/-0.41 mmol/liter [I+G]), and (c) plasma VLDL TG concentration (0. 68+/-0.79 [C] vs. 0.67+/- 0.63 mmol/liter [I+G]). Instead, the high-carbohydrate delivery in conjunction with insulin therapy increased the proportion of de novo-synthesized palmitate in VLDL TG from 13+/-5% (C) to 34+/-14% (I+G), with a corresponding decreased amount of palmitate from lipolysis. In association with the doubling of the secretion rate of de novo-synthesized fatty acid (FA) in VLDL TG during insulin therapy (P > 0.5), the relative amount of palmitate and stearate increased from 35+/-5 to 44+/-8% and 4+/-1 to 7+/-2%, respectively, in VLDL TG, while the relative concentration of oleate and linoleate decreased from 43+/-5 to 37+/-6% and 8+/-4% to 2+/-2%, respectively. A 15-fold increase in plasma insulin concentration did not change the rate of release of FA into plasma (8.22+/-2.86 [C] vs. 8.72+/-6.68 mmol/kg.d-1 [I+G]. The peripheral release of FA represents a far greater potential for hepatic lipid accumulation in burn patients than the endogenous hepatic fat synthesis, even during excessive carbohydrate intake in conjunction with insulin therapy
    corecore