163 research outputs found
Non-linear effects and shock formation in the focusing of a spherical acoustic wave : Numerical simulations and experiments in liquid helium
The focusing of acoustic waves is used to study nucleation phenomena in
liquids. At large amplitude, non-linear effects are important so that the
magnitude of pressure or density oscillations is difficult to predict. We
present a calculation of these oscillations in a spherical geometry.
We show that the main source of non-linearities is the shape of the equation
of state of the liquid, enhanced by the spherical geometry. We also show that
the formation of shocks cannot be ignored beyond a certain oscillation
amplitude. The shock length is estimated by an analytic calculation based on
the characteristics method. In our numerical simulations, we have treated the
shocks with a WENO scheme. We obtain a very good agreement with experimental
measurements which were recently performed in liquid helium. The comparison
between numerical and experimental results allows in particular to calibrate
the vibration of the ceramics used to produce the wave, as a function of the
applied voltage.Comment: 20 pages, 26 figures. Submitted to The European Physical Journal
SSE Spine Tango - content, workflow, set-up: www.eurospine.org - Spine Tango
The Spine Tango registry is now accessible via the SSE webpage under www.eurospine.org - Spine Tango. Links to the Swiss/International, German and Austrian modules are provided as well as information about the philosophy, methodology and content. Following the links, the users are taken to the respective national modules for registration or log-in and data entry. The Swiss/International module, also accessible under www.spinetango.com, is used by all Swiss and international users, who do not have a separate national module. The physician administered forms for surgery, staged surgery and follow-up can be downloaded as PDFs.The officially recommended Spine Tango patient forms are also available. All forms were implemented in an online version and as scannable optical mark reader forms which can be ordered from the corresponding autho
The energy budget in Rayleigh-Benard convection
It is shown using three series of Rayleigh number simulations of varying
aspect ratio AR and Prandtl number Pr that the normalized dissipation at the
wall, while significantly greater than 1, approaches a constant dependent upon
AR and Pr. It is also found that the peak velocity, not the mean square
velocity, obeys the experimental scaling of Ra^{0.5}. The scaling of the mean
square velocity is closer to Ra^{0.46}, which is shown to be consistent with
experimental measurements and the numerical results for the scaling of Nu and
the temperature if there are strong correlations between the velocity and
temperature.Comment: 5 pages, 3 figures, new version 13 Mar, 200
Cavitation pressure in liquid helium
Recent experiments have suggested that, at low enough temperature, the
homogeneous nucleation of bubbles occurs in liquid helium near the calculated
spinodal limit. This was done in pure superfluid helium 4 and in pure normal
liquid helium 3. However, in such experiments, where the negative pressure is
produced by focusing an acoustic wave in the bulk liquid, the local amplitude
of the instantaneous pressure or density is not directly measurable. In this
article, we present a series of measurements as a function of the static
pressure in the experimental cell. They allowed us to obtain an upper bound for
the cavitation pressure P_cav (at low temperature, P_cav < -2.4 bar in helium
3, P_cav < -8.0 bar in helium 4). From a more precise study of the acoustic
transducer characteristics, we also obtained a lower bound (at low temperature,
P_cav > -3.0 bar in helium 3, P_cav > - 10.4 bar in helium 4). In this article
we thus present quantitative evidence that cavitation occurs at low temperature
near the calculated spinodal limit (-3.1 bar in helium 3 and -9.5 bar in helium
4). Further information is also obtained on the comparison between the two
helium isotopes. We finally discuss the magnitude of nonlinear effects in the
focusing of a sound wave in liquid helium, where the pressure dependence of the
compressibility is large.Comment: 11 pages, 9 figure
Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure
We have used a Hartree-type electron-helium potential together with a density
functional description of liquid He and He to study the explosion of
electron bubbles submitted to a negative pressure. The critical pressure at
which bubbles explode has been determined as a function of temperature. It has
been found that this critical pressure is very close to the pressure at which
liquid helium becomes globally unstable in the presence of electrons. It is
shown that at high temperatures the capillary model overestimates the critical
pressures. We have checked that a commonly used and rather simple
electron-helium interaction yields results very similar to those obtained using
the more accurate Hartree-type interaction. We have estimated that the
crossover temperature for thermal to quantum nucleation of electron bubbles is
very low, of the order of 6 mK for He.Comment: 22 pages, 9 figure
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
The joy of ruling: an experimental investigation on collective giving
We analyse team dictator games with different voting mechanisms in the laboratory. Individuals vote to select a donation for all group members. Standard Bayesian analysis makes the same prediction for all three mechanisms: participants should cast the same vote regardless of the voting mechanism used to determine the common donation level. Our experimental results show that subjects fail to choose the same vote. We show that their behaviour is consistent with a joy of ruling: individuals get an extra utility when they determine the voting outcome
Hybrid constitutive modeling: data-driven learning of corrections to plasticity models
In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling
- …
