10 research outputs found

    Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis

    Get PDF
    Synergy study with chemotherapeutic agents is a common in vitro strategy in the search for effective cancer therapy. For non-chemotherapeutic agents, efficacious synergistic effects are uncommon. Here, we have examined two non-chemotherapeutic agents for synergistic effects: lovastatin and Tumor Necrosis Factor (TNF)-related apoptosis-inducing ligand (TRAIL) for synergistic effects; on three human malignant glioblastoma cell lines, M059K, M59J, and A172. Cells treated with lovastatin plus TRAIL for 48 h showed 50% apoptotic cell death, whereas TRAIL alone (1,000 ng/ml) did not, suggesting that lovastatin sensitized the glioblastoma cells to TRAIL attack. Cell cycle analysis indicated that lovastatin increased G0–G1 arrest in these cells. Annexin V study demonstrated that apoptosis was the predominant mode of cell death. We conclude that the combination of lovastatin and TRAIL enhances apoptosis synergistically. Moreover, lovastatin sensitized glioblastoma cells to TRAIL, suggesting a new strategy to treat glioblastoma

    Simvastatin and purine analogs have a synergic effect on apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Despite many therapeutic regimens introduced recently, chronic lymphocytic leukemia (CLL) is still an incurable disorder. Thus, there is an urgent need to discover novel, less toxic and more effective drugs for CLL patients. In this study, we attempted to assess simvastatin, widely used as a cholesterol-lowering drug, both as a single agent and in combination with purine analogs—fludarabine and cladribine—in terms of its effect on apoptosis and DNA damage of CLL cells. The experiments were done in ex vivo short-term cell cultures of blood and bone marrow cells from newly diagnosed untreated patients. We analyzed expression of active caspase-3 and the BCL-2/BAX ratio as markers of apoptosis and the expression of phosphorylated histone H2AX (named γH2AX) and activated ATM kinase (ataxia telangiectasia mutated kinase), reporters of DNA damage. Results of our study revealed that simvastatin induced apoptosis of CLL cells concurrently with lowering of BCL-2/BAX ratio, and its pro-apoptotic effect is tumor-specific, not affecting normal lymphocytes. We observed that combinations of simvastatin+fludarabine and simvastatin+cladribine had a synergic effect in inducing apoptosis. Interestingly, the rate of apoptosis caused by simvastatin alone and in combination was independent of markers of disease progression like ZAP-70 and CD38 expression or clinical stage according to Rai classification. We have also seen an increase in γH2AX expression in parallel with activation of ATM in most of the analyzed samples. The results suggest that simvastatin can be used in the treatment of CLL patients as a single agent as well as in combination with purine analogs, being equally effective both in high-risk and good-prognosis patients. One of the mechanisms of simvastatin action is inducing DNA damage that ultimately leads to apoptosis

    Statin Use and Markers of Immunity in the Doetinchem Cohort Study

    Get PDF
    It has been suggested that statins can both stimulate and suppress the immune system, and thereby, may influence autoimmune diseases. Therefore, we studied effects of statins on innate and adaptive immunity, and self-tolerance by measuring serological levels of C-reactive protein (CRP), neopterin, immunoglobulin E (IgE) antibodies and the presence of autoantibodies (antinuclear antibodies (ANA) and IgM rheumatoid factor (RF)) in the general population. We conducted a nested case-control study within the population-based Doetinchem cohort. Data from health questionnaires, serological measurements and information on medication from linkage to pharmacy-dispensing records were available. We selected 332 statin users (cases) and 331 non-users (controls), matched by age, sex, date of serum collection, history of cardiovascular diseases, diabetes mellitus type II and stroke. Multivariate regression analyses were performed to estimate effect of statins on the immune system. The median level of CRP in statin users (1.28 mg/L, interquartile range (IQR): 0.59-2.79) was lower than in non-users (1.62 mg/L, IQR: 0.79-3.35), which after adjustment was estimated to be a 28% lower level. We observed an inverse association between duration of statin use and CRP levels. Elevated levels of IgE (>100 IU/mL) were more prevalent in statin users compared to non-users. A trend towards increased levels of IgE antibodies in statin users was observed, whereas no associations were found between statin use and levels of neopterin or the presence of autoantibodies. In this general population sub-sample, we observed an anti-inflammatory effect of statin use and a trend towards an increase of IgE levels, an surrogate marker for Th (helper) 2 responses without a decrease in neopterin levels, a surrogate marker for Th1 response and/or self-tolerance. We postulate that the observed decreased inflammatory response during statin therapy may be important but is insufficient to induce loss of self-tolerance

    An updated review on synthetic cathinones

    No full text
    corecore