1,971 research outputs found
Time machines and the Principle of Self-Consistency as a consequence of the Principle of Stationary Action (II): the Cauchy problem for a self-interacting relativistic particle
We consider the action principle to derive the classical, relativistic motion
of a self-interacting particle in a 4-D Lorentzian spacetime containing a
wormhole and which allows the existence of closed time-like curves. In
particular, we study the case of a pointlike particle subject to a
`hard-sphere' self-interaction potential and which can traverse the wormhole an
arbitrary number of times, and show that the only possible trajectories for
which the classical action is stationary are those which are globally
self-consistent. Generically, the multiplicity of these trajectories (defined
as the number of self-consistent solutions to the equations of motion beginning
with given Cauchy data) is finite, and it becomes infinite if certain
constraints on the same initial data are satisfied. This confirms the previous
conclusions (for a non-relativistic model) by Echeverria, Klinkhammer and
Thorne that the Cauchy initial value problem in the presence of a wormhole
`time machine' is classically `ill-posed' (far too many solutions). Our results
further extend the recent claim by Novikov et al. that the `Principle of
self-consistency' is a natural consequence of the `Principle of minimal
action.'Comment: 39 pages, latex fil
Testing the Standard Model by precision measurement of the weak charges of quarks
In a global analysis of the latest parity-violating electron scattering
measurements on nuclear targets, we demonstrate a significant improvement in
the experimental knowledge of the weak neutral-current lepton-quark
interactions at low energy. The precision of this new result, combined with
earlier atomic parity-violation measurements, places tight constraints on the
size of possible contributions from physics beyond the Standard Model.
Consequently, this result improves the lower-bound on the scale of relevant new
physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak
parameters, new figur
Time machines: the Principle of Self-Consistency as a consequence of the Principle of Minimal Action
We consider the action principle to derive the classical, non-relativistic
motion of a self-interacting particle in a 4-D Lorentzian spacetime containing
a wormhole and which allows the existence of closed time-like curves. For the
case of a `hard-sphere' self-interaction potential we show that the only
possible trajectories (for a particle with fixed initial and final positions
and which traverses the wormhole once) minimizing the classical action are
those which are globally self-consistent, and that the `Principle of
self-consistency' (originally introduced by Novikov) is thus a natural
consequence of the `Principle of minimal action.'Comment: 26 pages, plain latex; modified version includes extra constraint for
collinear collision case and other minor misprints correction
Perturbation of matrices and non-negative rank with a view toward statistical models
In this paper we study how perturbing a matrix changes its non-negative rank.
We prove that the non-negative rank is upper-semicontinuos and we describe some
special families of perturbations. We show how our results relate to Statistics
in terms of the study of Maximum Likelihood Estimation for mixture models.Comment: 13 pages, 3 figures. A theorem has been rewritten, and some
improvements in the presentations have been implemente
Extracting nucleon strange and anapole form factors from world data
The complete world set of parity violating electron scattering data up to
Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of
the strange electric and magnetic form factors of the proton, as well as the
weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within
experimental uncertainties, we find that the strange form factors are
consistent with zero, as are the anapole contributions to the axial form
factors. Nevertheless, the correlation between the strange and anapole
contributions suggest that there is only a small probability that these form
factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR
A fully-discrete scheme for systems of nonlinear Fokker-Planck-Kolmogorov equations
We consider a system of Fokker-Planck-Kolmogorov (FPK) equations, where the
dependence of the coefficients is nonlinear and nonlocal in time with respect
to the unknowns. We extend the numerical scheme proposed and studied recently
by the authors for a single FPK equation of this type. We analyse the
convergence of the scheme and we study its applicability in two examples. The
first one concerns a population model involving two interacting species and the
second one concerns two populations Mean Field Games
Process reconstruction from incomplete and/or inconsistent data
We analyze how an action of a qubit channel (map) can be estimated from the
measured data that are incomplete or even inconsistent. That is, we consider
situations when measurement statistics is insufficient to determine consistent
probability distributions. As a consequence either the estimation
(reconstruction) of the channel completely fails or it results in an unphysical
channel (i.e., the corresponding map is not completely positive). We present a
regularization procedure that allows us to derive physically reasonable
estimates (approximations) of quantum channels. We illustrate our procedure on
specific examples and we show that the procedure can be also used for a
derivation of optimal approximations of operations that are forbidden by the
laws of quantum mechanics (e.g., the universal NOT gate).Comment: 9pages, 5 figure
Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain
We give analytical solutions for the time-optimal synthesis of entangling
gates between indirectly coupled qubits 1 and 3 in a linear spin chain of three
qubits subject to an Ising Hamiltonian interaction with equal coupling plus
a local magnetic field acting on the intermediate qubit. The energy available
is fixed, but we relax the standard assumption of instantaneous unitary
operations acting on single qubits. The time required for performing an
entangling gate which is equivalent, modulo local unitary operations, to the
between the indirectly coupled qubits 1 and 3 is
, i.e. faster than a previous estimate based on a similar
Hamiltonian and the assumption of local unitaries with zero time cost.
Furthermore, performing a simple Walsh-Hadamard rotation in the Hlibert space
of qubit 3 shows that the time-optimal synthesis of the (which acts as the identity when the control qubit 1 is in the state
, while if the control qubit is in the state the target
qubit 3 is flipped as ) also requires the same
time .Comment: 9 pages; minor modification
- …
