2,713 research outputs found
An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems
We study Bayesian inference methods for solving linear inverse problems,
focusing on hierarchical formulations where the prior or the likelihood
function depend on unspecified hyperparameters. In practice, these
hyperparameters are often determined via an empirical Bayesian method that
maximizes the marginal likelihood function, i.e., the probability density of
the data conditional on the hyperparameters. Evaluating the marginal
likelihood, however, is computationally challenging for large-scale problems.
In this work, we present a method to approximately evaluate marginal likelihood
functions, based on a low-rank approximation of the update from the prior
covariance to the posterior covariance. We show that this approximation is
optimal in a minimax sense. Moreover, we provide an efficient algorithm to
implement the proposed method, based on a combination of the randomized SVD and
a spectral approximation method to compute square roots of the prior covariance
matrix. Several numerical examples demonstrate good performance of the proposed
method
An iterative method with error estimators
AbstractIterative methods for the solution of linear systems of equations produce a sequence of approximate solutions. In many applications it is desirable to be able to compute estimates of the norm of the error in the approximate solutions generated and terminate the iterations when the estimates are sufficiently small. This paper presents a new iterative method based on the Lanczos process for the solution of linear systems of equations with a symmetric matrix. The method is designed to allow the computation of estimates of the Euclidean norm of the error in the computed approximate solutions. These estimates are determined by evaluating certain Gauss, anti-Gauss, or Gauss–Radau quadrature rules
Electromagnetic penguin operators and direct CP violation in K --> pi l^+ l^-
Supersymmetric extensions of the Standard Model predict a large enhancement
of the Wilson coefficients of the dimension-five electromagnetic penguin
operators affecting the direct CP violation in K_L --> pi^0 e^+ e^- and the
charge asymmetry in K^\pm --> pi^\pm l^+ l^-.
Here we compute the relevant matrix elements in the chiral quark model and
compare these with the ones given by lattice calculationsComment: 12 pages, JHEP style, gluonic corrections to B_T adde
The IAS-MEEG Package: A Flexible Inverse Source Reconstruction Platform for Reconstruction and Visualization of Brain Activity from M/EEG Data
We present a standalone Matlab software platform complete with visualization for the reconstruction of the neural activity in the brain from MEG or EEG data. The underlying inversion combines hierarchical Bayesian models and Krylov subspace iterative least squares solvers. The Bayesian framework of the underlying inversion algorithm allows to account for anatomical information and possible a priori belief about the focality of the reconstruction. The computational efficiency makes the software suitable for the reconstruction of lengthy time series on standard computing equipment. The algorithm requires minimal user provided input parameters, although the user can express the desired focality and accuracy of the solution. The code has been designed so as to favor the parallelization performed automatically by Matlab, according to the resources of the host computer. We demonstrate the flexibility of the platform by reconstructing activity patterns with supports of different sizes from MEG and EEG data. Moreover, we show that the software reconstructs well activity patches located either in the subcortical brain structures or on the cortex. The inverse solver and visualization modules can be used either individually or in combination. We also provide a version of the inverse solver that can be used within Brainstorm toolbox. All the software is available online by Github, including the Brainstorm plugin, with accompanying documentation and test data
A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen
The human brain is a small organ which uses a disproportional amount of the total metabolic energy pro- duction in the body. While it is well understood that the most significant energy sink is the maintenance of the neuronal membrane potential during the brain signaling activity, the role of astrocytes in the energy balance continues to be the topic of a lot of research. A key function of astrocytes, besides clearing glutamate from the synaptic clefts, is the potassium clearing after neuronal activation. Extracellular potassium plays a significant role in triggering neuronal firing, and elevated concentration of potassium may lead to abnormal firing pattern, e.g., seizures, thus emphasizing the importance of the glial K+ buffering role. The predictive mathematical model proposed in this paper elucidates the role of glial potassium clearing in brain energy metabolism, integrating a detailed model of the ion dynamics which regulates neuronal firing with a three compartment metabolic model. Because of the very different characteristic time scales of electrophysiology and metabolism, care must be taken when coupling the two models to ensure that the predictions, e.g., neuronal firing frequencies and the oxygen- glucose index (OGI) of the brain during activation and rest, are in agreement with empirical observations. The temporal multi-scale nature of the problem requires the design of new computational tools to ensure a stable and accurate numerical treatment of the problem. The model predictions for different protocols, including combinations of elevated activation and ischemic episodes, are in good agreement with experimental observations reported in the literature.This work was supported by the Bizkaia Talent and European Commission through CO- FUND under the grant CIPAS: Computational Inverse Problems Across Scales (AYD-000-278, 2015), by the Basque Government through the BERC 2014-2017 program, and by the Spanish Ministry of Economics and Competitive- ness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and the Spanish ”Plan Estatal de Investigacio ́n, Desarrollo e Innovacio ́n Orientada a los Retos de la Sociedad” under Grant BELEMET - Brain ELEctro-METabolic modeling and numerical approximation (MTM2015-69992-R). The work of Daniela Cal- vetti was partly supported by Grant Number 246665 from the Simons Foundation, and the work of Erkki Somersalo was partly supported by NSF Grant DMS 1016183. Daniela Calvetti and Erkki Somersalo were partly supported by NIH, grant 1U01GM111251-01
Brain energetics plays a key role in the coordination of electrophysiology, metabolism and hemodynamics: evidence from an integrated computational model
The energetic needs of brain cells at rest and during elevated neuronal activation has been the topic of many investigations where mathematical models have played a significant role providing a context for the interpretation of experimental findings. A recently proposed mathematical model, comprising a double feedback between cellular metabolism and electrophysiology, sheds light on the interconnections between the electrophysiological details associated with changes in the frequency of neuronal firing and the corresponding metabolic activity. We propose a new extended mathematical model comprising a three-way feedback connecting metabolism, electrophysiology and hemodynamics. Upon specifying the time intervals of higher neuronal activation, the model generates a potassium based signal leading to the concomitant increase in cerebral blood flow with associated vasodilation and metabolic changes needed to sustain the increased energy demand. The predictions of the model are in good qualitative and quantitative agreement with experimental findings reported in the literature, even predicting a slow after-hyperpolarization of a duration of approximately 16 s matching experimental observations.The work of Daniela Calvetti was partly support by NSF grants DMS-1522334 and NIH grant 1U01 GM111251-01. The work of Erkki Somersalo was partly support by NSF grants DMS 1714617 and NIH grant 1U01GM111251-01
Fast Gibbs sampling for high-dimensional Bayesian inversion
Solving ill-posed inverse problems by Bayesian inference has recently
attracted considerable attention. Compared to deterministic approaches, the
probabilistic representation of the solution by the posterior distribution can
be exploited to explore and quantify its uncertainties. In applications where
the inverse solution is subject to further analysis procedures, this can be a
significant advantage. Alongside theoretical progress, various new
computational techniques allow to sample very high dimensional posterior
distributions: In [Lucka2012], a Markov chain Monte Carlo (MCMC) posterior
sampler was developed for linear inverse problems with -type priors. In
this article, we extend this single component Gibbs-type sampler to a wide
range of priors used in Bayesian inversion, such as general priors
with additional hard constraints. Besides a fast computation of the
conditional, single component densities in an explicit, parameterized form, a
fast, robust and exact sampling from these one-dimensional densities is key to
obtain an efficient algorithm. We demonstrate that a generalization of slice
sampling can utilize their specific structure for this task and illustrate the
performance of the resulting slice-within-Gibbs samplers by different computed
examples. These new samplers allow us to perform sample-based Bayesian
inference in high-dimensional scenarios with certain priors for the first time,
including the inversion of computed tomography (CT) data with the popular
isotropic total variation (TV) prior.Comment: submitted to "Inverse Problems
The anisotropy of granular materials
The effect of the anisotropy on the elastoplastic response of two dimensional
packed samples of polygons is investigated here, using molecular dynamics
simulation. We show a correlation between fabric coefficients, characterizing
the anisotropy of the granular skeleton, and the anisotropy of the elastic
response. We also study the anisotropy induced by shearing on the subnetwork of
the sliding contacts. This anisotropy provides an explanation to some features
of the plastic deformation of granular media.Comment: Submitted to PR
- …