42,198 research outputs found
Recommended from our members
Service user involvement in the evaluation of psycho-social intervention for self-harm: a systematic literature review
Background: The efficacy of interventions and treatments for self-harm is well researched. Previous reviews of the literature have highlighted the lack of definitively effective interventions for self-harm and have highlighted the need for future research. These recommendations are also reflected in clinical guidelines published by the National Institute for Health and Clinical Excellence (NICE, 2004) which also call for service user involvement in studies of treatment efficacy. Aims: A systematic review was undertaken to determine i) what contributions service users have made to the evaluation of psychosocial interventions ii) by what methods have service users been involved iii) in what ways could service user involvement supplement empirical evidence for interventions
Arctic marine climate of the early nineteenth century
The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810 - 1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards. © 2010 Author(s)
On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk
We performed a series of hydro-dynamic simulations to investigate the orbital
migration of a Jovian planet embedded in a proto-stellar disk. In order to take
into account of the effect of the disk's self gravity, we developed and adopted
an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the
exact Reimann solution for isothermal or polytropic gas, with non-reflecting
boundary conditions. Our simulations indicate that in the study of the runaway
(type III) migration, it is important to carry out a fully self consistent
treatment of the gravitational interaction between the disk and the embedded
planet. Through a series of convergence tests, we show that adequate numerical
resolution, especially within the planet's Roche lobe, critically determines
the outcome of the simulations. We consider a variety of initial conditions and
show that isolated, non eccentric protoplanet planets do not undergo type III
migration. We attribute the difference between our and previous simulations to
the contribution of a self consistent representation of the disk's self
gravity. Nevertheless, type III migration cannot be completely suppressed and
its onset requires finite amplitude perturbations such as that induced by
planet-planet interaction. We determine the radial extent of type III migration
as a function of the disk's self gravity.Comment: 19 pages, 13 figure
Field enhancement in subnanometer metallic gaps
Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732
(2010)], we present here a theoretical analysis of the optical response of
sharp gold electrodes separated by a subnanometer gap. In particular, we have
used classical finite difference time domain simulations to investigate the
electric field distribution in these nanojunctions upon illumination. Our
results show a strong confinement of the field within the gap region, resulting
in a large enhancement compared to the incident field. Enhancement factors
exceeding 1000 are found for interelectrode distances on the order of a few
angstroms, which are fully compatible with the experimental findings. Such huge
enhancements originate from the coupling of the incident light to the
evanescent field of hybrid plasmons involving charge density oscillations in
both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review
A comparison of operationally determined atmospheric densities from satellite orbit solutions and the exospheric temperature from the Jacchia-Roberts model
Operational orbit determination by the Flight Dynamics Division at the Goddard Space Flight Center has yielded a data base of orbit solutions covering the onset of solar cycle 22. Solutions for nine satellites include an estimated drag adjustment parameter (rho sub 1) determined by the Goddard Trajectory Determination System (GTDS). The rho sub 1 is used to evaluate correlations between density variations and changes in the following: 10.7-centimeter wavelength solar flux (F sub 10.7), the geomagnetic index A sub p, and two exospheric temperatures (T sub c and T sub infinity) adapted from the Jacchia-Roberts atmospheric density model in GTDS. T sub c depends on the daily and 81-day centered mean F sub 10.7; T sub infinity depends on T sub c and the geomagnetic index K sub p values. The highest correlations are between density and T sub infinity. Correlations with T sub c and F sub 10.7 are lower by 9 and 10 percent, respectively. For most cases, correlations with A sub p are considerably lower; however, significant correlations with A sub p were found for some high-inclination, moderate-altitude orbits. Results from this analysis enhance the understanding of the drag model and the accommodation of atmospheric density variations in the operational orbit determination support. The degree of correlation demonstrates the sensitivity of the orbit determination process to drag variations and to the input parameters that characterize aspects of the atmospheric density model. To this extent, the degree of correlation provides a measure of performance for methods of selecting or modeling the thermospheric densities using the solar F sub 10.7 and geomagnetic data as input to the process
Molecular gas freeze-out in the pre-stellar core L1689B
C17O (J=2-1) observations have been carried out towards the pre-stellar core
L1689B. By comparing the relative strengths of the hyperfine components of this
line, the emission is shown to be optically thin. This allows accurate CO
column densities to be determined and, for reference, this calculation is
described in detail. The hydrogen column densities that these measurements
imply are substantially smaller than those calculated from SCUBA dust emission
data. Furthermore, the C17O column densities are approximately constant across
L1689B whereas the SCUBA column densities are peaked towards the centre. The
most likely explanation is that CO is depleted from the central regions of
L1689B. Simple models of pre-stellar cores with an inner depleted region are
compared with the results. This enables the magnitude of the CO depletion to be
quantified and also allows the spatial extent of the freeze-out to be firmly
established. We estimate that within about 5000 AU of the centre of L1689B,
over 90% of the CO has frozen onto grains. This level of depletion can only be
achieved after a duration that is at least comparable to the free-fall
timescale.Comment: MNRAS letters. 5 pages, 5 figure
An effect of age on implicit memory that is not due to explicit contamination: implications for single and multiple-systems theories
Recognition memory is typically weaker in healthy older relative to young adults, while performance on implicit tests (e.g., repetition priming) is often comparable between groups. Such observations are commonly taken as evidence for independent explicit and implicit memory systems. On a picture version of the continuous identification with recognition (CID-R) task, we found a reliable age-related reduction in recognition memory, while the age effect on priming did not reach statistical significance (Experiment 1). This pattern was consistent with the predictions of a formal single-system model. Experiment 2 replicated these observations using separate priming (continuous identification; CID) and recognition phases, while a combined data analysis revealed a significant effect of age on priming. In Experiment 3, we provide evidence that priming in this task is unaffected by explicit processing, and we conclude that the age difference in priming is unlikely to have been driven by differences in explicit processing between groups of young and older adults (“explicit contamination”). The results support the view that explicit and implicit expressions of memory are driven by a single underlying memory system
- …