6,042 research outputs found

    On Classical Motion

    Get PDF
    The impetus theory of motion states that to be in motion is to have a non-zero velocity. The at-at theory of motion states that to be in motion is to be at different places at different times, which in classical physics is naturally understood as the reduction of velocities to position developments. I first defend the at-at theory against the criticism raised by Arntzenius that it renders determinism impossible. I then develop a novel impetus theory of motion that reduces positions to velocity developments. As this impetus theory of motion is by construction a mirror image of the at-at theory of motion, I claim that the two theories of motion are in fact epistemically on par—despite the unfamiliar metaphysical picture of the world furnished by the impetus version

    Did the Universe Have a Chance?

    Get PDF
    In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had

    Spin-spin Correlation in Some Excited States of Transverse Ising Model

    Full text link
    We consider the transverse Ising model in one dimension with nearest-neighbour interaction and calculate exactly the longitudinal spin-spin correlation for a class of excited states. These states are known to play an important role in the perturbative treatment of one-dimensional transverse Ising model with frustrated second-neighbour interaction. To calculate the correlation, we follow the earlier procedure of Wu, use Szego's theorem and also use Fisher-Hartwig conjecture. The result is that the correlation decays algebraically with distance (nn) as 1/n1/\surd n and is oscillatory or non-oscillatory depending on the magnitude of the transverse field.Comment: 5 pages, 1 figur

    The potential impact on Florida-based marina and boating industries of a post-embargo Cuba: an analysis of geographic, physical, policy and industry trends

    Get PDF
    The information in this Technical Paper addresses the future of the US-Cuban marina and recreational boating industries from the geographic, physical, policy making and economic perspectives for a post-embargo Cuba. Each individual paper builds on the presentations made at the workshop, the information obtained in the subsequent trip to Cuba and presents in detailed form information which we hope is useful to all readers. (147pp.

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include

    Localization transitions in non-Hermitian quantum mechanics

    Full text link
    We study the localization transitions which arise in both one and two dimensions when quantum mechanical particles described by a random Schr\"odinger equation are subjected to a constant imaginary vector potential. A path-integral formulation relates the transition to flux lines depinned from columnar defects by a transverse magnetic field in superconductors. The theory predicts that the transverse Meissner effect is accompanied by stretched exponential relaxation of the field into the bulk and a diverging penetration depth at the transition.Comment: 4 pages (latex) with 3 figures (epsf) embedded in the text using the style file epsf.st

    Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases

    Full text link
    The real-space renormalization group (RG) treatment of random transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411 (1995)}) has been extended into the strongly ordered and strongly disordered Griffiths phases and asymptotically exact results are obtained. In the non-critical region the asymmetry of the renormalization of the couplings and the transverse fields is related to a non-linear quantum control parameter, Δ\Delta, which is a natural measure of the distance from the quantum critical point. Δ\Delta, which is found to stay invariant along the RG trajectories and has been expressed by the initial disorder distributions, stands in the singularity exponents of different physical quantities (magnetization, susceptibility, specific heat, etc), which are exactly calculated. In this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities does not depend on the form of the disorder, provided the non-linear quantum control parameter has the same value. The exact scaling function of the magnetization with a small applied magnetic field is calculated and the critical point magnetization singularity is determined in a simple, direct way.Comment: 11 page

    Interpretive analogies between quantum and statistical mechanics

    Get PDF
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology and to the quantum measurement problem

    Meta-Empirical Support for Eliminative Reasoning

    Get PDF
    Eliminative reasoning is a method that has been employed in many significant episodes in the history of science. It has also been advocated by some philosophers as an important means for justifying well-established scientific theories. Arguments for how eliminative reasoning is able to do so, however, have generally relied on a too narrow conception of evidence, and have therefore tended to lapse into merely heuristic or pragmatic justifications for their conclusions. This paper shows how a broader conception of evidence not only can supply the needed justification but also illuminates the methodological significance of eliminative reasoning in a variety of contexts
    corecore