6,042 research outputs found
On Classical Motion
The impetus theory of motion states that to be in motion is to have a non-zero velocity. The at-at theory of motion states that to be in motion is to be at different places at different times, which in classical physics is naturally understood as the reduction of velocities to position developments. I first defend the at-at theory against the criticism raised by Arntzenius that it renders determinism impossible. I then develop a novel impetus theory of motion that reduces positions to velocity developments. As this impetus theory of motion is by construction a mirror image of the at-at theory of motion, I claim that the two theories of motion are in fact epistemically on par—despite the unfamiliar metaphysical picture of the world furnished by the impetus version
Did the Universe Have a Chance?
In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had
Spin-spin Correlation in Some Excited States of Transverse Ising Model
We consider the transverse Ising model in one dimension with
nearest-neighbour interaction and calculate exactly the longitudinal spin-spin
correlation for a class of excited states. These states are known to play an
important role in the perturbative treatment of one-dimensional transverse
Ising model with frustrated second-neighbour interaction. To calculate the
correlation, we follow the earlier procedure of Wu, use Szego's theorem and
also use Fisher-Hartwig conjecture. The result is that the correlation decays
algebraically with distance () as and is oscillatory or
non-oscillatory depending on the magnitude of the transverse field.Comment: 5 pages, 1 figur
The potential impact on Florida-based marina and boating industries of a post-embargo Cuba: an analysis of geographic, physical, policy and industry trends
The information in this Technical Paper addresses the future of the US-Cuban marina and recreational
boating industries from the geographic, physical, policy making and economic perspectives for a post-embargo Cuba.
Each individual paper builds on the presentations made at the workshop, the information obtained in the subsequent trip
to Cuba and presents in detailed form information which we hope is useful to all readers. (147pp.
Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization
The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study
singular quantities in the Griffiths phase of random quantum spin chains. For
the random transverse-field Ising spin chain we have extended Fisher's
analytical solution to the off-critical region and calculated the dynamical
exponent exactly. Concerning other random chains we argue by scaling
considerations that the RG method generally becomes asymptotically exact for
large times, both at the critical point and in the whole Griffiths phase. This
statement is checked via numerical calculations on the random Heisenberg and
quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include
Localization transitions in non-Hermitian quantum mechanics
We study the localization transitions which arise in both one and two
dimensions when quantum mechanical particles described by a random
Schr\"odinger equation are subjected to a constant imaginary vector potential.
A path-integral formulation relates the transition to flux lines depinned from
columnar defects by a transverse magnetic field in superconductors. The theory
predicts that the transverse Meissner effect is accompanied by stretched
exponential relaxation of the field into the bulk and a diverging penetration
depth at the transition.Comment: 4 pages (latex) with 3 figures (epsf) embedded in the text using the
style file epsf.st
Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases
The real-space renormalization group (RG) treatment of random
transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411
(1995)}) has been extended into the strongly ordered and strongly disordered
Griffiths phases and asymptotically exact results are obtained. In the
non-critical region the asymmetry of the renormalization of the couplings and
the transverse fields is related to a non-linear quantum control parameter,
, which is a natural measure of the distance from the quantum critical
point. , which is found to stay invariant along the RG trajectories and
has been expressed by the initial disorder distributions, stands in the
singularity exponents of different physical quantities (magnetization,
susceptibility, specific heat, etc), which are exactly calculated. In this way
we have observed a weak-universality scenario: the Griffiths-McCoy
singularities does not depend on the form of the disorder, provided the
non-linear quantum control parameter has the same value. The exact scaling
function of the magnetization with a small applied magnetic field is calculated
and the critical point magnetization singularity is determined in a simple,
direct way.Comment: 11 page
Interpretive analogies between quantum and statistical mechanics
The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology and to the quantum measurement problem
Meta-Empirical Support for Eliminative Reasoning
Eliminative reasoning is a method that has been employed in many significant episodes in the history of science. It has also been advocated by some philosophers as an important means for justifying well-established scientific theories. Arguments for how eliminative reasoning is able to do so, however, have generally relied on a too narrow conception of evidence, and have therefore tended to lapse into merely heuristic or pragmatic justifications for their conclusions. This paper shows how a broader conception of evidence not only can supply the needed justification but also illuminates the methodological significance of eliminative reasoning in a variety of contexts
- …