4,727 research outputs found
Gravitational Collapse of Dust with a Cosmological Constant
The recent analysis of Markovic and Shapiro on the effect of a cosmological
constant on the evolution of a spherically symmetric homogeneous dust ball is
extended to include the inhomogeneous and degenerate cases. The histories are
shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.
Junctions and thin shells in general relativity using computer algebra I: The Darmois-Israel Formalism
We present the GRjunction package which allows boundary surfaces and
thin-shells in general relativity to be studied with a computer algebra system.
Implementing the Darmois-Israel thin shell formalism requires a careful
selection of definitions and algorithms to ensure that results are generated in
a straight-forward way. We have used the package to correctly reproduce a wide
variety of examples from the literature. We present several of these
verifications as a means of demonstrating the packages capabilities. We then
use GRjunction to perform a new calculation - joining two Kerr solutions with
differing masses and angular momenta along a thin shell in the slow rotation
limit.Comment: Minor LaTeX error corrected. GRjunction for GRTensorII is available
from http://astro.queensu.ca/~grtensor/GRjunction.htm
Cosmological milestones and energy conditions
Until recently, the physically relevant singularities occurring in FRW
cosmologies had traditionally been thought to be limited to the "big bang", and
possibly a "big crunch". However, over the last few years, the zoo of
cosmological singularities considered in the literature has become considerably
more extensive, with "big rips" and "sudden singularities" added to the mix, as
well as renewed interest in non-singular cosmological events such as "bounces"
and "turnarounds". In this talk, we present an extensive catalogue of such
cosmological milestones, both at the kinematical and dynamical level. First,
using generalized power series, purely kinematical definitions of these
cosmological events are provided in terms of the behaviour of the scale factor
a(t). The notion of a "scale-factor singularity" is defined, and its relation
to curvature singularities (polynomial and differential) is explored. Second,
dynamical information is extracted by using the Friedmann equations (without
assuming even the existence of any equation of state) to place constraints on
whether or not the classical energy conditions are satisfied at the
cosmological milestones. Since the classification is extremely general, and
modulo certain technical assumptions complete, the corresponding results are to
a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in
Nafplio, Greec
Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation
Applying a magnetic-field gradient to a trapped ion allows long-wavelength radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb+171 ion and use it to produce entanglement between the spin and motional state, an essential step toward using such a field gradient to implement multiqubit operations
Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain
The space- and time-dependent response of many-body quantum systems is the
most informative aspect of their emergent behaviour. The dynamical structure
factor, experimentally measurable using neutron scattering, can map this
response in wavevector and energy with great detail, allowing theories to be
quantitatively tested to high accuracy. Here, we present a comparison between
neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg
antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on
integrability and density matrix renormalization group simulations. The
unprecedented quantitative agreement shows that precise descriptions of
strongly correlated states at all distance, time and temperature scales are now
possible, and highlights the need to apply these novel techniques to other
problems in low-dimensional magnetism
Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions
We demonstrate a method for preparing and detecting all eigenstates of a three-level microwave dressed system with a single trapped ion. The method significantly reduces the experimental complexity of gate operations with dressed-state qubits, as well as allowing all three of the dressed states to be prepared and detected, thereby providing access to a qutrit that is well protected from magnetic field noise. In addition, we demonstrate individual addressing of the clock transitions in two ions using a strong static magnetic field gradient, showing that our method can be used to prepare and detect microwave dressed states in a string of ions when performing multi-ion quantum operations with microwave and radio frequency fields. The individual addressability of clock transitions could also allow for the control of pairwise interaction strengths between arbitrary ions in a string using lasers
Shell Crossing Singularities in Quasi-Spherical Szekeres Models
We investigate the occurrence of shell crossing singularities in
quasi-spherical Szekeres dust models with or without a cosmological constant.
We study the conditions for shell crossing singularity both from physical and
geometrical point of view and they are in agreement.Comment: 10 latex pages, RevTex style, no figure
Optical Spectroscopic Survey of High-latitude WISE-selected Sources
We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies
- …
