389 research outputs found

    Is there more than one thermal source?

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions over a wide range of pT and rapidity. This allows us to test whether thermal models can be generalized to describe the rapidity dependence of particle ratios. This appears to work with the baryo-chemical potential changing more rapidly than the temperature. Using fits to BRAHMS data for the 5% most central Au+Au collisions we are able to describe Xi and Omega ratios from other experiments. This paper is dedicated to Julia Thompson who worked to bring South African teachers into physics.Comment: 5 pages, 4 figures, proceedings for SQM04 conference, Cape Town South Afric

    Cavity spin optodynamics

    Full text link
    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.Comment: 4 pages, 3 figure

    Tunable Cavity Optomechanics with Ultracold Atoms

    Full text link
    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.Comment: 4 pages, 5 figure

    High-flux beam source for cold, slow atoms or molecules

    Full text link
    We demonstrate and characterize a high-flux beam source for cold, slow atoms or molecules. The desired species is vaporized using laser ablation, then cooled by thermalization in a cryogenic cell of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell. We characterize the properties of the beam (flux, forward velocity, temperature) for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and discuss conditions for optimizing these beam parameters. Our source compares favorably to existing techniques of beam formation, for a variety of applications.Comment: 5 Pages, 4 figure

    CGC, QCD Saturation and RHIC data (Kharzeev-Levin-McLerran-Nardi point of view)

    Full text link
    This is the talk given at the Workshop:"Focus on Multiplicitioes", Bari, Italy, 17-19 June,2004.. In this talk, we are going to discuss ion-ion and deuteron - nucleus RHIC data and show that they support, if not more, the idea of the new QCD phase: colour glass condensate with saturated parton density. .Comment: 26 pages with 33 figure

    Relativistic hydrodynamics with strangeness production

    Full text link
    The relativistic hydrodynamic approach is used to describe production of strangeness and/or heavy quarks in ultrarelativistic heavy ion reactions. Production processes are important ingredients of dissipative effects in the hadronic liquid. Beyond viscosity also chemo- and thermo-diffusion processes are considered. This also allows to specify chemical and thermal freeze-out conditions.Comment: v.2 with minor editorial corrections, 7 pages, talk given on the SQM2007 conference, Levoca, June 24-29, 2007. To appear in the proceceeding: Journal of Physics

    Elliptical Flow in Relativistic Ion Collisions at s^(1/2)= 200 A GeV

    Full text link
    A consistent picture of the Au+Au and D+Au, s^1/2 = 200 A GeV measurements at RHIC obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors including both the rapidity and transverse momentum spectra was previously developed with the simulation LUCIFER. The approach was modeled on the early production of a fluid of pre-hadrons after the completion of an initial, phase of high energy interactions. The formation of pre-hadrons is discussed here, in a perturbative QCD approach as advocated by Kopeliovich, Nemchik and Schmidt. In the second phase of LUCIFER, a considerably lower energy hadron-like cascade ensues. Since the dominant collisions occurring in this latter phase are meson-meson in character while the initial collisions are between baryons, i.e. both involve hadron sized interaction cross-sections, there is good reason to suspect that the observed elliptical flow will be produced naturally, and this is indeed found to be the case.Comment: 7 pages, 6 figure

    Correlations and fluctuations studied with ALICE

    Full text link
    The measurement of particle correlations and event-by-event fluctuations of physical observables allows to study a large variety of properties of the matter produced in ultra relativistic heavy-ion collisions. We will present results for two-particle correlations, mean transverse momentum fluctuations, and net charge fluctuations in Pb-Pb collisions at 2.76 TeV.Comment: 7 pages, 5 figures, Proceedings submitted for the 28th Winter Workshop on Nuclear Dynamics, Puerto Rico, April 7-14, 2012; corrected typo

    Suppression of High Transverse Momentum π0\pi^0 Spectra in Au+Au Collisions at RHIC

    Full text link
    Au+Au, s1/2=200s^{1/2} = 200 A GeV measurements at RHIC, obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral pion production, relative to an appropriately normalized NN level. For central collisions and vanishing pseudo-rapidity these experiments exhibit suppression in charged meson production, especially at medium to large transverse momenta. In the PHENIX experiment similar behavior has been reported for π0\pi^0 spectra. In a recent work on the simpler D+Au interaction, to be considered perhaps as a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which explains the mixed observation of moderately reduced p⊥p_\perp suppression at higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here we present the extension of this work to the more massive ion-ion collisions. Our major thesis is that much of the suppression is generated in a late stage cascade of colourless pre-hadrons produced after an initial short-lived coloured phase. We present a pQCD argument to justify this approach and to estimate the time duration τp\tau_p of this initial phase. Of essential importance is the brevity in time of the coloured phase existence relative to that of the strongly interacting pre-hadron phase. The split into two phases is of course not sharp in time, but adequate for treating the suppression of moderate and high p⊥p_\perp mesons.Comment: 19 pages, 10 figure
    • …
    corecore