22 research outputs found
Quantitative Evaluation of Genetic Diversity in Wheat Germplasm Using Molecular Markers
Characterization of germplasm by means of DNA fingerprinting techniques provides a tool for precise germplasm identification and a quantitative estimate of genetic diversity. This estimate is important because a decrease in genetic variability might result in a reduction of the plasticity of the crops to respond to changes in climate, pathogen populations, or agricultural practices. In this study, 105 Argentine bread wheat (Triticum aestivum L.) cultivars released between 1932 and 1995 were characterized by simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. A selected subset of 10 highly informative SSR was used to construct an Identification Matrix that allowed the discrimination of the 105 cultivars. Data obtained from SSR markers were complemented by information derived from AFLPs. Molecular data were used to quantify genetic diversity across Argentine wheat breeding programs and to determine if modern wheat cultivars have a lower genetic diversity than earlier cultivars (genetic erosion). No significant differences in genetic diversity were found among the large private and public breeding programs, suggesting that each of them contains a representative sample of the complete diversity of the Argentine germplasm. Significant differences were found for both SSR and AFLP only between breeding programs with large differences in number of released cultivars. No significant differences in genetic diversity were found between the group of cultivars released before 1960 and those released in each of the following three decades. Average diversity values based on SSR markers were almost identical for the four analyzed periods. Genetic diversity estimates based on AFLP data confirmed the absence of a reduction of genetic diversity with time, but significant differences (P = 0.01) were found between bread wheat cultivars released in the 1970s (PIC = 0.28) and those released in the 1980s (PIC = 0.34). These results show that the Argentine bread wheat germplasm has maintained a relatively constant level of genetic diversity during the last half century