2,502 research outputs found
Minimum cbits for remote preperation and measurement of a qubit
We show that a qubit chosen from equatorial or polar great circles on a Bloch
spehere can be remotely prepared with one cbit from Alice to Bob if they share
one ebit of entanglement. Also we show that any single particle measurement on
an arbitrary qubit can be remotely simulated with one ebit of shared
entanglement and communication of one cbit.Comment: Latex, 7 pages, minor changes, references adde
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
Scaling of excitations in dimerized and frustrated spin-1/2 chains
We study the finite-size behavior of the low-lying excitations of spin-1/2
Heisenberg chains with dimerization and next-to-nearest neighbors interaction,
J_2. The numerical analysis, performed using density-matrix renormalization
group, confirms previous exact diagonalization results, and shows that, for
different values of the dimerization parameter \delta, the elementary triplet
and singlet excitations present a clear scaling behavior in a wide range of
\ell=L/\xi (where L is the length of the chain and \xi is the correlation
length). At J_2=J_2c, where no logarithmic corrections are present, we compare
the numerical results with finite-size predictions for the sine-Gordon model
obtained using Luscher's theory. For small \delta we find a very good agreement
for \ell > 4 or 7 depending on the excitation considered.Comment: 4 pages, 4 eps figures, RevTeX 4 class, same version as in PR
Tomographic resolution of ray and finite-frequency methods: A membrane-wave investigation
The purpose of this study is to evaluate the resolution potential of current finite-frequency approaches to tomography, and to do that in a framework similar to that of global scale seismology. According to our current knowledge and understanding, the only way to do this is by constructing a large set of ‘ground-truth' synthetic data computed numerically (spectral elements, finite differences, etc.), and then to invert them using the various available linearized techniques. Specifically, we address the problem of using surface wave data to map phase-velocity distributions. Our investigation is strictly valid for the propagation of elastic waves on a spherical, heterogeneous membrane, and a good analogue for the propagation of surface waves within the outermost layers of the Earth. This amounts to drastically reducing the computational expense, with a certain loss of accuracy if very short-wavelength features of a strongly heterogeneous Earth are to be modelled. Our analysis suggests that a single-scattering finite-frequency approach to tomography, with sensitivity kernels computed via the adjoint method, is significantly more powerful than ray-theoretical methods, as a tool to image the fine structure of the Eart
Quantum analogues of Hardy's nonlocality paradox
Hardy's nonlocality is a "nonlocality proof without inequalities": it
exemplifies that quantum correlations can be qualitatively stronger than
classical correlations. This paper introduces variants of Hardy's nonlocality
in the CHSH scenario which are realized by the PR-box, but not by quantum
correlations. Hence this new kind of Hardy-type nonlocality is a proof without
inequalities showing that superquantum correlations can be qualitatively
stronger than quantum correlations.Comment: minor fixe
Ab initio analysis of the x-ray absorption spectrum of the myoglobin-carbon monoxide complex: Structure and vibrations
We present a comparison between Fe K-edge x-ray absorption spectra of
carbonmonoxy-myoglobin and its simulation based on density-functional theory
determination of the structure and vibrations and spectral simulation with
multiple-scattering theory. An excellent comparison is obtained for the main
part of the molecular structure without any structural fitting parameters. The
geometry of the CO ligand is reliably determined using a synergic approach to
data analysis. The methodology underlying this approach is expected to be
especially useful in similar situations in which high-resolution data for
structure and vibrations are available.Comment: 13 pages, 3 figure
Classical Teleportation of a Quantum Bit
Classical teleportation is defined as a scenario where the sender is given
the classical description of an arbitrary quantum state while the receiver
simulates any measurement on it. This scenario is shown to be achievable by
transmitting only a few classical bits if the sender and receiver initially
share local hidden variables. Specifically, a communication of 2.19 bits is
sufficient on average for the classical teleportation of a qubit, when
restricted to von Neumann measurements. The generalization to
positive-operator-valued measurements is also discussed.Comment: 4 pages, RevTe
Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake
The deformation at the core-mantle boundary produced by the 2004 Sumatra
earthquake is investigated by means of a semi-analytic theoretical model of
global coseismic and postseismic deformation, predicting a millimetric
coseismic perturbation over a large portion of the core-mantle boundary.
Spectral features of such deformations are analysed and discussed. The
time-dependent postseismic evolution of the elliptical part of the gravity
field (J2) is also computed for different asthenosphere viscosity models. Our
results show that, for asthenospheric viscosities smaller than 10^18 Pa s, the
postseismic J2 variation in the next years is expected to leave a detectable
signal in geodetic observations.Comment: 14 pages, 8 figures, 1 table. It will appear in Geophysical Journal
Internationa
- …