633 research outputs found
Influence of environmental and spatial factors on the distribution of surface sediment diatoms in Chaohu Lake, southeast China
The spatial distribution of surface sediment diatoms in Chaohu Lake (southeast China), and their relationships with environmental and spatial variables were analyzed in this study. The diatom assemblages were dominated by planktonic species. Three dominant species Cyclostephanos dubius, Aulacoseira granulata and Aulacoseira alpigenaare unevenly distributed across the lake. The distribution of surface sediment diatoms must be subject to trophic status, hydrodynamics and other spatial variables in the lake
Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation
Both the environment and the spatial configuration of habitat patches are important factors that shape community composition and affect species diversity patterns. Species have traits that allow them to respond to their environment. Our current knowledge on environment to species traits relationships is limited in spite of its potential importance for understanding community assembly and ecosystem function. The aim of our study was to examine the relative roles of environmental and spatial variables for the small-scale variation in Collembola (springtail) communities in a Dutch salt marsh. We used a trait-based approach in combination with spatial statistics and variance partitioning, between environmental and spatial variables, to examine the important ecological factors that drive community composition. Turnover of trait diversity across space was lower than for species diversity. Most of the variation in community composition was explained by small-scale spatial variation in topography, on a scale of 4-6 m, most likely because it determines the effect of inundation, which restricts where habitat generalists can persist. There were only small pure spatial effects on species and trait diversity, indicating that biotic interactions or dispersal limitation probably were less important for structuring the community at this scale. Our results suggest that for springtails, life form (i.e. whether they live in the soil or litter or on the surface/in vegetation) is an important and useful trait to understand community assembly. Hence, using traits in addition to species identity when analysing environment-organism relationships results in a better understanding of the factors affecting community composition
The distribution of soil insects across three spatial scales in agricultural grassland
The effects of specific environmental factors on abundance and distribution of some individual soil insect taxa is known, but how scale influences spatial distribution is less well evaluated, particularly at the community level. However, given that many soil insects are pests or beneficial natural enemies, and that collectively they play a role in soil processes, this information is of potential value for predictive modeling and in furthering our understanding of soil ecology and management. The objectives of this study were to characterize the spatial distribution, relative population sizes, effect of sampling scale and taxa co-occurrence on a range of soil insects at the family level over 2 years. Soil cores were taken from agricultural grassland soils across three different sampling scales (farm, field, and core) using a systematic sampling approach. Spatial distribution was assessed using the variance-to-mean (VMR) ratio and taxa distribution plots and the contribution of scale, spatial (geographical location), and biotic (presence-absence of other species) factors determined using deviance partitioning. Tipulid larvae (leatherjackets) were the most abundant taxa in both years, but the composition of other Dipteran and Coleopteran taxa varied between years. The VMRs revealed differences in spatial distribution between taxa across scales and years, showing a range of underlying distributional patterns. Scale was the most important factor influencing species distributions, but a large proportion of deviance remained unexplained and there was much variation between taxa, suggesting biological and scale-specific factors are driving distributions, in agreement with a previous study
Environmental Controls and Anthropogenic Impacts on Deep-Sea Sponge Grounds in the Faroe-Shetland Channel, NE Atlantic: the Importance of Considering Spatial Scale to Distinguish Drivers of Change
Determining the scale of anthropogenic impacts is critical in order to understand ecosystem effects of human activities, within the context of changes caused by natural environmental variability. We applied spatial eigenfunction analysis to disentangle effects of anthropogenic drivers from environmental factors on species assembly in the Faroe-Shetland Channel (FSC), in the northeast Atlantic. We found that the species assembly considered here was structured at both small and large spatial scales. Specifically, substrate types, distance to oil wells and pipelines, the presence of objects and demersal fishing (both static and mobile) appeared significant in explaining large spatial scale species assembly structures. Conversely, temperature and variance in temperature shaped the species community across smaller spatial scales. Mobile scavenger species were found in areas impacted by demersal fishing. Oil and gas structures seemed to provide a habitat for a range of species including the commercially important fishes Molva sp. and Sebastes sp. These results demonstrate how the benthic ecosystem in the FSC has been shaped by multiple human activities, at both small and large spatial scales. Only by sampling datasets covering several sites, like in this study, can the effects of anthropogenic activities be separated from natural environmental controls
Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve
To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world
Behavioural Thermoregulatory Tactics in Lacustrine Brook Charr, Salvelinus fontinalis
The need to vary body temperature to optimize physiological processes can lead to thermoregulatory behaviours, particularly in ectotherms. Despite some evidence of within-population phenotypic variation in thermal behaviour, the occurrence of alternative tactics of this behaviour is rarely explicitly considered when studying natural populations. The main objective of this study was to determine whether different thermal tactics exist among individuals of the same population. We studied the behavioural thermoregulation of 33 adult brook charr in a stratified lake using thermo-sensitive radio transmitters that measured hourly individual temperature over one month. The observed behavioural thermoregulatory patterns were consistent between years and suggest the existence of four tactics: two “warm” tactics with both crepuscular and finer periodicities, with or without a diel periodicity, and two “cool” tactics, with or without a diel periodicity. Telemetry data support the above findings by showing that the different tactics are associated with different patterns of diel horizontal movements. Taken together, our results show a clear spatio-temporal segregation of individuals displaying different tactics, suggesting a reduction of niche overlap. To our knowledge, this is the first study showing the presence of behavioural thermoregulatory tactics in a vertebrate
From spatial ecology to spatial epidemiology: Modeling spatial distributions of different cancer types with principal coordinates of neighbor matrices
Epidemiology and ecology share many fundamental research questions. Here we describe how principal coordinates of neighbor matrices (PCNM), a method from spatial ecology, can be applied to spatial epidemiology. PCNM is based on geographical distances among sites and can be applied to any set of sites providing a good coverage of a study area. In the present study, PCNM eigenvectors corresponding to positive autocorrelation were used as explanatory variables in linear regressions to model incidences of eight most common cancer types in Finnish municipalities (n = 320). The dataset was provided by the Finnish Cancer Registry and it included altogether 615,839 cases between 1953 and 2010. Results: PCNM resulted in 165 vectors with a positive eigenvalue. The first PCNM vector corresponded to the wavelength of hundreds of kilometers as it contrasted two main subareas so that municipalities located in southwestern Finland had the highest positive site scores and those located in midwestern Finland had the highest negative scores in that vector. Correspondingly, the 165thPCNM vector indicated variation mainly between the two small municipalities located in South Finland. The vectors explained 13 - 58% of the spatial variation in cancer incidences. The number of outliers having standardized residual > |3| was very low, one to six per model, and even lower, zero to two per model, according to Chauvenet's criterion. The spatial variation of prostate cancer was best captured (adjusted r 2= 0.579). Conclusions: PCNM can act as a complementary method to causal modeling to achieve a better understanding of the spatial structure of both the response and explanatory variables, and to assess the spatial importance of unmeasured explanatory factors. PCNM vectors can be used as proxies for demographics and causative agents to deal with autocorrelation, multicollinearity, and confounding variables. PCNM may help to extend spatial epidemiology to areas with limited availability of registers, improve cost-effectiveness, and aid in identifying unknown causative agents, and predict future trends in disease distributions and incidences. A large advantage of using PCNM is that it can create statistically valid reflectors of real predictors for disease incidence models with only little resources and background information
Multiscale Drivers of Water Chemistry of Boreal Lakes and Streams
The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors
Local Factors Determine Plant Community Structure on Closely Neighbored Islands
Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental) and regional (dispersal) factors in structuring woody plant assemblages (tree and shrub species) on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework–species sorting–best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value
- …