95 research outputs found

    Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer

    Get PDF
    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen

    Independent Component Analysis-motivated Approach to Classificatory Decomposition of Cortical Evoked Potentials

    Get PDF
    BACKGROUND: Independent Component Analysis (ICA) proves to be useful in the analysis of neural activity, as it allows for identification of distinct sources of activity. Applied to measurements registered in a controlled setting and under exposure to an external stimulus, it can facilitate analysis of the impact of the stimulus on those sources. The link between the stimulus and a given source can be verified by a classifier that is able to "predict" the condition a given signal was registered under, solely based on the components. However, the ICA's assumption about statistical independence of sources is often unrealistic and turns out to be insufficient to build an accurate classifier. Therefore, we propose to utilize a novel method, based on hybridization of ICA, multi-objective evolutionary algorithms (MOEA), and rough sets (RS), that attempts to improve the effectiveness of signal decomposition techniques by providing them with "classification-awareness." RESULTS: The preliminary results described here are very promising and further investigation of other MOEAs and/or RS-based classification accuracy measures should be pursued. Even a quick visual analysis of those results can provide an interesting insight into the problem of neural activity analysis. CONCLUSION: We present a methodology of classificatory decomposition of signals. One of the main advantages of our approach is the fact that rather than solely relying on often unrealistic assumptions about statistical independence of sources, components are generated in the light of a underlying classification problem itself

    Clustering-based approaches to SAGE data mining

    Get PDF
    Serial analysis of gene expression (SAGE) is one of the most powerful tools for global gene expression profiling. It has led to several biological discoveries and biomedical applications, such as the prediction of new gene functions and the identification of biomarkers in human cancer research. Clustering techniques have become fundamental approaches in these applications. This paper reviews relevant clustering techniques specifically designed for this type of data. It places an emphasis on current limitations and opportunities in this area for supporting biologically-meaningful data mining and visualisation

    Daily magnesium fluxes regulate cellular timekeeping and energy balance

    Get PDF
    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes1, 2, 3. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology4, 5. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg2+]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago6. Given the essential role of Mg2+ as a cofactor for ATP, a functional consequence of [Mg2+]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg2+ availability has potential to impact upon many of the cell’s more than 600 MgATP-dependent enzymes7 and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR8 is regulated through [Mg2+]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease
    • 

    corecore