274 research outputs found

    Bose-Einstein condensation of metastable helium: some experimental aspects

    Full text link
    We describe our recent realization of BEC using metastable helium. All detection is done with a micruchannel plate which detects the metastables or ions coming from the trapped atom cloud. This discussion emphasizes some of the diagnostic experiments which were necessary to quantitatively analyse our results.Comment: 5 pages, 3 figure

    Hanbury Brown Twiss effect for ultracold quantum gases

    Full text link
    We have studied 2-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, while the correlation is flat for a coherent sample. These quantum correlations are the atomic analogue of the Hanbury Brown Twiss effect. We observe the effect in three dimensions and study its dependence on cloud size.Comment: Figure 1 availabl

    Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates

    Full text link
    Low energy elastic scattering between clouds of Bose condensed atoms leads to the well known s-wave halo with atoms emerging in all directions from the collision zone. In this paper we discuss the emergence of Hanbury Brown and Twiss coincidences between atoms scattered in nearly parallel directions. We develop a simple model that explains the observations in terms of an interference involving two pairs of atoms each associated with the elementary s wave scattering process.Comment: Minor corrections. reference update

    Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates

    Full text link
    We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.Comment: A few typos have been correcte

    Thermal counting statistics in an atomic two-mode squeezed vacuum state

    Full text link
    We measure the population distribution in one of the atomic twin beams generated by four-wave mixing in an optical lattice. Although the produced two-mode squeezed vacuum state is pure, each individual mode is described as a statistical mixture. We confirm the prediction that the particle number follows an exponential distribution when only one spatio-temporal mode is selected. We also show that this distribution accounts well for the contrast of an atomic Hong--Ou--Mandel experiment. These experiments constitute an important validation of our twin beam source in view of a future test of a Bell inequalities.Comment: SciPost submissio

    Ionization rates in a Bose-Einstein condensate of metastable Helium

    Full text link
    We have studied ionizing collisions in a BEC of He*. Measurements of the ion production rate combined with measurements of the density and number of atoms for the same sample allow us to estimate both the 2 and 3-body contributions to this rate. A comparison with the decay of the number of condensed atoms in our magnetic trap, in the presence of an rf-shield, indicates that ionizing collisions are largely or wholly responsible for the loss. Quantum depletion makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure

    Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms

    Full text link
    We report an experiment measuring simultaneously the temperatureand the flux of ions produced by a cloud of triplet metastablehelium atoms at the Bose-Einstein critical temperature. The onsetof condensation is revealed by a sharp increase of the ion fluxduring evaporative cooling. Combining our measurements withprevious measurements of ionization in a pure BEC,we extract an improved value of the scattering lengtha=11.31+2a=11.3^{+2}_{-1} nm. The analysis includes corrections takinginto accountthe effect of atomic interactions on the criticaltemperature, and thus an independent measurement of the scatteringlength would allow a new test of these calculations
    corecore