2,159 research outputs found

    Electronic structure of Ba(Fe,Ru)2As2 and Sr(Fe,Ir)2As2 alloys

    Full text link
    The electronic structures of Ba(Fe,Ru)2_2As2_2 and Sr(Fe,Ir)2_2As2_2 are investigated using density functional calculations. We find that these systems behave as coherent alloys from the electronic structure point of view. In particular, the isoelectronic substitution of Fe by Ru does not provide doping, but rather suppresses the spin density wave characteristic of the pure Fe compound by a reduction in the Stoner enhancement and an increase in the band width due hybridization involving Ru. The electronic structure near the Fermi level otherwise remains quite similar to that of BaFe2_{2}As2_{2}. The behavior of the Ir alloy is similar, except that in this case there is additional electron doping

    Magnetic structure and orbital ordering in BaCoO3 from first-principles calculations

    Full text link
    Ab initio calculations using the APW+lo method as implemented in the WIEN2k code have been used to describe the electronic structure of the quasi-one-dimensional system BaCoO3. Both, GGA and LDA+U approximations were employed to study different orbital and magnetic orderings. GGA predicts a metallic ground state whereas LDA+U calculations yield an insulating and ferromagnetic ground state (in a low-spin state) with an alternating orbital ordering along the Co-Co chains, consistent with the available experimental data.Comment: 8 pages, 9 figure

    Layered Kondo lattice model for quantum critical beta-YbAlB4

    Full text link
    We analyze the magnetic and electronic properties of the quantum critical heavy fermion superconductor beta-YbAlB4, calculating the Fermi surface and the angular dependence of the extremal orbits relevant to the de Haas--van Alphen measurements. Using a combination of the realistic materials modeling and single-ion crystal field analysis, we are led to propose a layered Kondo lattice model for this system, in which two dimensional boron layers are Kondo coupled via interlayer Yb moments in a Jz=±5/2J_{z}=\pm 5/2 state. This model fits the measured single ion magnetic susceptibility and predicts a substantial change in the electronic anisotropy as the system is pressure-tuned through the quantum critical point.Comment: Fig.3 and 4 have been updated, typos corrected in v2. Published at http://link.aps.org/doi/10.1103/PhysRevLett.102.07720

    Effect of doping and pressure on magnetism and lattice structure of Fe-based superconductors

    Full text link
    Using first principles calculations, we analyze structural and magnetic trends as a function of charge doping and pressure in BaFe2_2As2_2, and compare to experimentally established facts. We find that density functional theory, while accurately reproducing the structural and magnetic ordering at ambient pressure, fails to reproduce some structural trends as pressure is increased. Most notably, the Fe-As bondlength which is a gauge of the magnitude of the magnetic moment, μ\mu, is rigid in experiment, but soft in calculation, indicating residual local Coulomb interactions. By calculating the magnitude of the magnetic ordering energy, we show that the disruption of magnetic order as a function of pressure or doping can be qualitatively reproduced, but that in calculation, it is achieved through diminishment of ∣μ∣|\mu|, and therefore likely does not reflect the same physics as detected in experiment. We also find that the strength of the stripe order as a function of doping is strongly site-dependent: magnetism decreases monotonically with the number of electrons doped at the Fe site, but increases monotonically with the number of electrons doped at the Ba site. Intra-planar magnetic ordering energy (the difference between checkerboard and stripe orderings) and interplanar coupling both follow a similar trend. We also investigate the evolution of the orthorhombic distortion, e=(a−b)/(a+b),e=(a-b)/(a+b), as a function of μ\mu, and find that in the regime where experiment finds a linear relationship, our calculations are impossible to converge, indicating that in density functional theory, the transition is first order, signalling anomalously large higher order terms in the Landau functional

    On the calculation of the bandgap of periodic solids with MGGA functionals using the total energy

    Get PDF
    During the last few years, it has become more and more clear that functionals of the meta generalized gradient approximation (MGGA) are more accurate than GGA functionals for the geometry and energetics of electronic systems. However, MGGA functionals are also potentially more interesting for the electronic structure, in particular, when the potential is nonmultiplicative (i.e., when MGGAs are implemented in the generalized Kohn-Sham framework), which may help to get more accurate bandgaps. Here, we show that the calculation of bandgap of solids with MGGA functionals can also be done very accurately in a non-self-consistent manner. This scheme uses only the total energy and can, therefore, be very useful when the self-consistent implementation of a particular MGGA functional is not available. Since self-consistent MGGA calculations may be difficult to converge, the non-self-consistent scheme may also help to speed up the calculations. Furthermore, it can be applied to any other types of functionals, for which the implementation of the corresponding potential is not trivial

    Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set

    Full text link
    The implementation of screened hybrid functionals into the WIEN2k code, which is based on the LAPW basis set, is reported. The Hartree-Fock exchange energy and potential are screened by means of the Yukawa potential as proposed by Bylander and Kleinman [Phys. Rev. B 41, 7868 (1990)] for the calculation of the electronic structure of solids with the screened-exchange local density approximation. Details of the formalism, which is based on the method of Massidda, Posternak, and Baldereschi [Phys. Rev. B 48, 5058 (1993)] for the unscreened Hartree-Fock exchange are given. The results for the transition-energy and structural properties of several test cases are presented. Results of calculations of the Cu electric-field gradient in Cu2O are also presented, and it is shown that the hybrid functionals are much more accurate than the standard local-density or generalized gradient approximations

    Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys

    Full text link
    Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site driven ferroelectricity, even though the average tolerance factor is significantly smaller than unity and there is no stereochemically active A-site ion. This is due to the frustration of tilt instabilities by A-site disorder. There are very large off-centerings of the Li ions, which contribute strongly to the anisotropy between the tetragonal and rhombohedral ferroelectric states, yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure

    Metallic "Ferroelectricity" in the Pyrochlore Cd2Re2O7

    Full text link
    A class of materials known as ``ferroelectric metals'' was discussed theoretically by Anderson and Blount in 1965 [Phys. Rev. Lett. 14, 217 (1965)], but to date no examples of this class have been reported. Here we present measurements of the elastic moduli of Cd2Re2O7 through the 200 K cubic-to-tetragonal phase transition. A Landau analysis of the moduli reveals that the transition is consistent with Cd2Re2O7 being classified as a ``ferroelectric metal'' in the weaker sense described by Anderson and Blount (loss of a center of symmetry). First-principles calculations of the lattice instabilities indicate that the dominant lattice instability corresponds to a two-fold degenerate mode with Eu symmetry, and that motions of the O ions forming the O octahedra dominate the energetics of the transition.Comment: 4 pages, 2 figure

    Evidence for magnetic clusters in BaCoO3_3

    Full text link
    Magnetic properties of the transition metal oxide BaCoO3_3 are analyzed on the basis of the experimental and theoretical literature available via ab inito calculations. These can be explained by assuming the material to be formed by noninteracting ferromagnetic clusters of about 1.2 nm in diameter separated by about 3 diameters. Above about 50 K, the so-called blocking temperature, superparamagnetic behavior of the magnetic clusters occurs and, above 250 K, paramagnetism sets in.Comment: 4 pages, 1 figur
    • …
    corecore