1,421 research outputs found
Impact of climate induced glacial melting on coastal marine systems in the Western Antarctic Peninsula region
IMCOAST is an international research program that features a multidisciplinary approach involving geo and biological sciences, field investigations, remote sensing and modeling and knowledge into the hydrographical and biological history of the marine coastal ecosystems of the Western Antarctic Peninsula region
Ion dynamics in multiple electrostatic waves in a magnetized plasma -- Part II: Enhancement of the acceleration
On the Klein-Gordon equation and hyperbolic pseudoanalytic function theory
Elliptic pseudoanalytic function theory was considered independently by Bers
and Vekua decades ago. In this paper we develop a hyperbolic analogue of
pseudoanalytic function theory using the algebra of hyperbolic numbers. We
consider the Klein-Gordon equation with a potential. With the aid of one
particular solution we factorize the Klein-Gordon operator in terms of two
Vekua-type operators. We show that real parts of the solutions of one of these
Vekua-type operators are solutions of the considered Klein-Gordon equation.
Using hyperbolic pseudoanalytic function theory, we then obtain explicit
construction of infinite systems of solutions of the Klein-Gordon equation with
potential. Finally, we give some examples of application of the proposed
procedure
Vlasov Simulations of Trapping and Inhomogeneity in Raman Scattering
We study stimulated Raman scattering (SRS) in laser-fusion conditions with
the Eulerian Vlasov code ELVIS. Back SRS from homogeneous plasmas occurs in
sub-picosecond bursts and far exceeds linear theory. Forward SRS and re-scatter
of back SRS are also observed. The plasma wave frequency downshifts from the
linear dispersion curve, and the electron distribution shows flattening. This
is consistent with trapping and reduces the Landau damping. There is some
acoustic () activity and possibly electron acoustic scatter.
Kinetic ions do not affect SRS for early times but suppress it later on. SRS
from inhomogeneous plasmas exhibits a kinetic enhancement for long density
scale lengths. More scattering results when the pump propagates to higher as
opposed to lower density.Comment: 4 pages, 6 figures. Submitted to "Journal of Plasmas Physics" for the
conference proceedings of the 19th International Conference on Numerical
Simulation of Plasma
Ion dynamics in multiple electrostatic waves in a magnetized plasma -- Part I: Coherent acceleration
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
- …
