826 research outputs found

    Comparison of Josephson vortex flow transistors with different gate line configurations

    Full text link
    We performed numerical simulations and experiments on Josephson vortex flow transistors based on parallel arrays of YBa2Cu3O(7-x) grain boundary junctions with a cross gate-line allowing to operate the same devices in two different modes named Josephson fluxon transistor (JFT) and Josephson fluxon-antifluxon transistor (JFAT). The simulations yield a general expression for the current gain vs. number of junctions and normalized loop inductance and predict higher current gain for the JFAT. The experiments are in good agreement with simulations and show improved coupling between gate line and junctions for the JFAT as compared to the JFT.Comment: 3 pages, 6 figures, accept. for publication in Appl. Phys. Let

    Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond

    Full text link
    The temperature dependence of the magnetic resonance spectra of nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were studied with NV- concentrations ranging from 10 ppb to 15 ppm. For all of these samples, the axial zero-field splitting (ZFS) parameter, D, was found to vary significantly with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter, E, was non-zero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT) = -1.4(3) x 10^(-4) K^(-1). The results might be accounted for by considering local thermal expansion. The observation of the temperature dependence of the ZFS parameters presents a significant challenge for room-temperature diamond magnetometers and may ultimately limit their bandwidth and sensitivity.Comment: 5 pages, 2 figures, 1 tabl

    Fluctuations and oscillations in a simple epidemic model

    Full text link
    We show that the simplest stochastic epidemiological models with spatial correlations exhibit two types of oscillatory behaviour in the endemic phase. In a large parameter range, the oscillations are due to resonant amplification of stochastic fluctuations, a general mechanism first reported for predator-prey dynamics. In a narrow range of parameters that includes many infectious diseases which confer long lasting immunity the oscillations persist for infinite populations. This effect is apparent in simulations of the stochastic process in systems of variable size, and can be understood from the phase diagram of the deterministic pair approximation equations. The two mechanisms combined play a central role in explaining the ubiquity of oscillatory behaviour in real data and in simulation results of epidemic and other related models.Comment: acknowledgments added; a typo in the discussion that follows Eq. (3) is corrected

    Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions

    Full text link
    We theoretically study classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC circuit. The TA and MQT escape rate are calculated by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling leads to the slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson junctions.Comment: 9 pages, 2 figure
    • …
    corecore