112 research outputs found

    Channel Capacity Gain in Entanglement-Assisted Communication Protocols Based Exclusevly on Linear Optics and Single Photon Inputs

    Full text link
    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.5850.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this paper we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting and separable single photon input states and at the same time provide a greater capacity gain than 0.5850.585 bits. We show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon NN-mode entangled states for N=6,8N=6,8.Comment: resubmitted version, improved presentation, added discussio

    Generic Two-Qubit Photonic Gates Implemented by Number-Resolving Photodetection

    Full text link
    We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical KLM-type two-qubit entangling gates. We find that while any two-qubit controlled-U gate, including CNOT and CS, can be implemented using only two ancilla resources with success probability S > 0.05, a generic SU(4) operation requires three unentangled ancilla photons, with success S > 0.0063. Specifically, we obtain a maximal success probability close to 0.0072 for the B gate. We show that single-shot implementation of a generic SU(4) gate offers more than an order of magnitude increase in the success probability and two-fold reduction in overhead ancilla resources compared to standard triple-CNOT and double-B gate decompositions.Comment: 5 pages, 3 figure

    General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    Full text link
    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Grobner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation.Comment: 5 pages, 2 figure

    Dynamics of light propagation in spatiotemporal dielectric structures

    Full text link
    Propagation, transmission and reflection properties of linearly polarized plane waves and arbitrarily short electromagnetic pulses in one-dimensional dispersionless dielectric media possessing an arbitrary space-time dependence of the refractive index are studied by using a two-component, highly symmetric version of Maxwell's equations. The use of any slow varying amplitude approximation is avoided. Transfer matrices of sharp nonstationary interfaces are calculated explicitly, together with the amplitudes of all secondary waves produced in the scattering. Time-varying multilayer structures and spatiotemporal lenses in various configurations are investigated analytically and numerically in a unified approach. Several new effects are reported, such as pulse compression, broadening and spectral manipulation of pulses by a spatiotemporal lens, and the closure of the forbidden frequency gaps with the subsequent opening of wavenumber bandgaps in a generalized Bragg reflector

    Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    Get PDF
    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in QD's: second-order elastic interaction between quantum dot charge carriers and LO-phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing.Comment: 4 pages, 1 figure, accepted for Phys. Rev. Let

    Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence

    Get PDF
    A new scheme for infrared generation without population inversion between subbands in quantum-well and quantum-dot lasers is presented and documented by detailed calculations. The scheme is based on the simultaneous generation at three frequencies: optical lasing at the two interband transitions which take place simultaneously, in the same active region, and serve as the coherent drive for the IR field. This mechanism for frequency down-conversion does not rely upon any ad hoc assumptions of long-lived coherences in the semiconductor active medium. And it should work efficiently at room temperature with injection current pumping. For optimized waveguide and cavity parameters, the intrinsic efficiency of the down-conversion process can reach the limiting quantum value corresponding to one infrared photon per one optical photon. Due to the parametric nature of IR generation, the proposed inversionless scheme is especially promising for long-wavelength (far- infrared) operation.Comment: 4 pages, 1 Postscript figure, Revtex style. Replacement corrects a printing error in the authors fiel

    Optimal Fusion Transformations for Linear Optical Cluster State Generation

    Full text link
    We analyze the generation of linear optical cluster states (LOCS) via addition of one and two qubits. Existing approaches employ the stochastic linear optical two-qubit CZ gate with success rate of 1/9 per fusion operation. The question of optimality of the CZ gate with respect to LOCS generation remains open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. We show that the maximal success rate of fusing n photonic qubits or m Bell pairs is 1/2^n-1 and 1/4^m-1 respectively and give an explicit optical design
    corecore