112 research outputs found
Channel Capacity Gain in Entanglement-Assisted Communication Protocols Based Exclusevly on Linear Optics and Single Photon Inputs
Entanglement can effectively increase communication channel capacity as
evidenced by dense coding that predicts a capacity gain of 1 bit when compared
to entanglement-free protocols. However, dense coding relies on Bell states and
when implemented using photons the capacity gain is bounded by bits due
to one's inability to discriminate between the four optically encoded Bell
states. In this paper we study the following question: Are there alternative
entanglement-assisted protocols that rely only on linear optics, coincidence
photon counting and separable single photon input states and at the same time
provide a greater capacity gain than bits. We show that besides the
Bell states there is a class of bipartite four-mode two-photon entangled states
that facilitate an increase in channel capacity. We also discuss how the
proposed scheme can be generalized to the case of two-photon -mode entangled
states for .Comment: resubmitted version, improved presentation, added discussio
Generic Two-Qubit Photonic Gates Implemented by Number-Resolving Photodetection
We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79,
042326 (2009)] with symmetries of the Weyl chamber to obtain optimal
implementations of generic linear-optical KLM-type two-qubit entangling gates.
We find that while any two-qubit controlled-U gate, including CNOT and CS, can
be implemented using only two ancilla resources with success probability S >
0.05, a generic SU(4) operation requires three unentangled ancilla photons,
with success S > 0.0063. Specifically, we obtain a maximal success probability
close to 0.0072 for the B gate. We show that single-shot implementation of a
generic SU(4) gate offers more than an order of magnitude increase in the
success probability and two-fold reduction in overhead ancilla resources
compared to standard triple-CNOT and double-B gate decompositions.Comment: 5 pages, 3 figure
General linear-optical quantum state generation scheme: Applications to maximally path-entangled states
We introduce schemes for linear-optical quantum state generation. A quantum
state generator is a device that prepares a desired quantum state using product
inputs from photon sources, linear-optical networks, and postselection using
photon counters. We show that this device can be concisely described in terms
of polynomial equations and unitary constraints. We illustrate the power of
this language by applying the Grobner-basis technique along with the notion of
vacuum extensions to solve the problem of how to construct a quantum state
generator analytically for any desired state, and use methods of convex
optimization to identify bounds to success probabilities. In particular, we
disprove a conjecture concerning the preparation of the maximally
path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using
these methods, and we derive a new upper bound on the resources required for
NOON-state generation.Comment: 5 pages, 2 figure
Dynamics of light propagation in spatiotemporal dielectric structures
Propagation, transmission and reflection properties of linearly polarized
plane waves and arbitrarily short electromagnetic pulses in one-dimensional
dispersionless dielectric media possessing an arbitrary space-time dependence
of the refractive index are studied by using a two-component, highly symmetric
version of Maxwell's equations. The use of any slow varying amplitude
approximation is avoided. Transfer matrices of sharp nonstationary interfaces
are calculated explicitly, together with the amplitudes of all secondary waves
produced in the scattering. Time-varying multilayer structures and
spatiotemporal lenses in various configurations are investigated analytically
and numerically in a unified approach. Several new effects are reported, such
as pulse compression, broadening and spectral manipulation of pulses by a
spatiotemporal lens, and the closure of the forbidden frequency gaps with the
subsequent opening of wavenumber bandgaps in a generalized Bragg reflector
Dephasing times in quantum dots due to elastic LO phonon-carrier collisions
Interpretation of experiments on quantum dot (QD) lasers presents a
challenge: the phonon bottleneck, which should strongly suppress relaxation and
dephasing of the discrete energy states, often seems to be inoperative. We
suggest and develop a theory for an intrinsic mechanism for dephasing in QD's:
second-order elastic interaction between quantum dot charge carriers and
LO-phonons. The calculated dephasing times are of the order of 200 fs at room
temperature, consistent with experiments. The phonon bottleneck thus does not
prevent significant room temperature dephasing.Comment: 4 pages, 1 figure, accepted for Phys. Rev. Let
Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence
A new scheme for infrared generation without population inversion between
subbands in quantum-well and quantum-dot lasers is presented and documented by
detailed calculations. The scheme is based on the simultaneous generation at
three frequencies: optical lasing at the two interband transitions which take
place simultaneously, in the same active region, and serve as the coherent
drive for the IR field. This mechanism for frequency down-conversion does not
rely upon any ad hoc assumptions of long-lived coherences in the semiconductor
active medium. And it should work efficiently at room temperature with
injection current pumping. For optimized waveguide and cavity parameters, the
intrinsic efficiency of the down-conversion process can reach the limiting
quantum value corresponding to one infrared photon per one optical photon. Due
to the parametric nature of IR generation, the proposed inversionless scheme is
especially promising for long-wavelength (far- infrared) operation.Comment: 4 pages, 1 Postscript figure, Revtex style. Replacement corrects a
printing error in the authors fiel
Optimal Fusion Transformations for Linear Optical Cluster State Generation
We analyze the generation of linear optical cluster states (LOCS) via
addition of one and two qubits. Existing approaches employ the stochastic
linear optical two-qubit CZ gate with success rate of 1/9 per fusion operation.
The question of optimality of the CZ gate with respect to LOCS generation
remains open. We report that there are alternative schemes to the CZ gate that
are exponentially more efficient and show that sequential LOCS growth is
globally optimal. We find that the optimal cluster growth operation is a state
transformation on a subspace of the full Hilbert space. We show that the
maximal success rate of fusing n photonic qubits or m Bell pairs is 1/2^n-1 and
1/4^m-1 respectively and give an explicit optical design
- …
