2,397 research outputs found

    Coherent, mechanical control of a single electronic spin

    Get PDF
    The ability to control and manipulate spins via electrical, magnetic and optical means has generated numerous applications in metrology and quantum information science in recent years. A promising alternative method for spin manipulation is the use of mechanical motion, where the oscillation of a mechanical resonator can be magnetically coupled to a spins magnetic dipole, which could enable scalable quantum information architectures9 and sensitive nanoscale magnetometry. To date, however, only population control of spins has been realized via classical motion of a mechanical resonator. Here, we demonstrate coherent mechanical control of an individual spin under ambient conditions using the driven motion of a mechanical resonator that is magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV) color center in diamond. Coherent control of this hybrid mechanical/spin system is achieved by synchronizing pulsed spin-addressing protocols (involving optical and radiofrequency fields) to the motion of the driven oscillator, which allows coherent mechanical manipulation of both the population and phase of the spin via motion-induced Zeeman shifts of the NV spins energy. We demonstrate applications of this coherent mechanical spin-control technique to sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure

    Effect of branchings on blood flow in the system of human coronary arteries

    Get PDF
    In this work, we investigate the behavior of the pulsatile blood flow in the system of human coronary arteries. Blood is modeled as an incompressible non-Newtonian fluid. The transient phenomena of blood flow through the coronary system are simulated by solving the three dimensional unsteady state Navier-Stokes equations and continuity equation. Distributions of velocity, pressure and wall shear stresses are determined in the system under pulsatile conditions on the boundaries. Effect of branching vessel on the flow problem is investigated. The numerical results show that blood pressure in the system with branching vessels of coronary arteries is lower than the one in the system with no branch. The magnitude of wall shear stresses rises at the bifurcation

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure

    Non-Centrosymmetric Heavy-Fermion Superconductors

    Full text link
    In this chapter we discuss the physical properties of a particular family of non-centrosymmetric superconductors belonging to the class heavy-fermion compounds. This group includes the ferromagnet UIr and the antiferromagnets CeRhSi3, CeIrSi3, CeCoGe3, CeIrGe3 and CePt3Si, of which all but CePt3Si become superconducting only under pressure. Each of these superconductors has intriguing and interesting properties. We first analyze CePt3Si, then review CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in their magnetic and electrical properties, and finally discuss UIr. For each material we discuss the crystal structure, magnetic order, occurrence of superconductivity, phase diagram, characteristic parameters, superconducting properties and pairing states. We present an overview of the similarities and differences between all these six compounds at the end.Comment: To appear in "Non-Centrosymmetric Superconductors: Introduction and Overview", Lecture Notes in Physics 847, edited by E. Bauer and M. Sigrist (Springer-Verlag, Berlin Heidelberg, 2012) Chap. 2, pp. 35-7

    Search for the Invisible Decay of Neutrons with KamLAND

    Get PDF
    The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used in a search for single neutron or two neutron intra-nuclear disappearance that would produce holes in the s\it{s}-shell energy level of 12^{12}C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (invinv), e.g. n3νn \to 3\nu or nn2νnn \to 2\nu. The de-excitation of the corresponding daughter nucleus results in a sequence of space and time correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(ninv)>5.8×1029\tau(n\to inv)> 5.8\times 10^{29} years and τ(nninv)>1.4×1030\tau (nn \to inv)> 1.4 \times 10^{30} years at 90% CL. These results represent an improvement of factors of \sim3 and >104>10^4 over previous experiments.Comment: 5 pages, 3 figure

    Measurements of π±\pi^\pm, K±K^\pm, KS0K^0_S, Λ\Lambda and proton production in proton-carbon interactions at 31 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±\pi^\pm, K±K^\pm, p, KS0K^0_S and Λ\Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the final published versio

    Miocene Volcaniclastic Sequence Within the Xiyu Formation from Source to Sink: Implications for Drainage Development and Tectonic Evolution in Eastern Pamir, NW Tibetan Plateau

    Get PDF
    ©2018. American Geophysical Union. All Rights Reserved. The formation of the Pamir salient and the Tashkorgan-Yarkand River is highly debated with the ages ranging from pre-Cenozoic to late Miocene. One approach to resolve these issues is to draw support from the sedimentary record in the surrounding basins. A volcaniclastic sequence, which divides into Lower and Upper Members, was identified in the southwestern Tarim Basin. The Lower Member was transported by dilute streamflows, which likely flowed during or soon after eruptions, while the Upper Member was formed by a syneruptive volcanic debris flow. Chronological, petrologic, and geochemical data consistently indicate that the sequence was derived from the Central Pamir at ~11 Ma. The ~11 Ma emplacement of the volcaniclastic sequence provides unique constraints for the evolution of the Tashkorgan-Yarkand River and the Pamir salient. Provenance data indicate a multistage evolutionary history of the Tashkorgan-Yarkand River. The paleo-Tashkorgan River was initially formed in the piedmont of the Pamir marginal range before ~15 Ma. This river cut back into the Tashkorgan region at ~15 Ma, after which it has eroded the Central Pamir by ~11 Ma. The N-S trending upper reaches of the Tashkorgan River and the Yarkand River were established after ~11 Ma. The emplacement of the volcanic debris flow, together with regional deformation evidence, indicates limited strike-slip motion between Pamir and the Tarim at least since ~11 Ma, which refutes hundreds of kilometers offset between the Pamir and the Tarim after this time and supports an earlier indention of the Pamir salient

    Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton-year exposure of KamLAND to reactor anti-neutrinos. We observe 258 \nuebar\ candidate events with energies above 3.4 MeV compared to 365.2 events expected in the absence of neutrino oscillation. Accounting for 17.8 expected background events, the statistical significance for reactor \nuebar disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from \nuebar oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2. A global analysis of data from KamLAND and solar neutrino experiments yields \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2 and \ThetaParam = 0.400.07+0.10^{+0.10}_{-0.07}, the most precise determination to date.Comment: 5 pages, 4 figures; submitted to Phys.Rev.Letter

    Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

    Full text link
    We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociative after the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.Comment: 18 pages, 6 figures, 2 tables, to be appeared in Frontiers of Physics 9(6), 780 (2014

    Ferromagnetism and Superconductivity in Uranium Compounds

    Full text link
    Recent advances on ferromagnetic superconductors, UGe2, URhGe and UCoGe are presented. The superconductivity (SC) peacefully coexists with the ferromagnetism (FM), forming the spin-triplet state of Cooper pairs. The striking new phenomena, such as SC reinforced by the magnetic field, are associated with Ising-type ferromagnetic fluctuations. A variety of ferromagnetic ordered moments between UGe2, URhGe and UCoGe affords to understand the relation between FM, tricriticality and SC.Comment: 11 pages, 16 figures, accepted for publication in J. Phys. Soc. Jpn. as a review article of Special Topics of "Recent developments in superconductivity
    corecore