2,056 research outputs found
Can the Copernican principle be tested by cosmic neutrino background?
The Copernican principle, stating that we do not occupy any special place in
our universe, is usually taken for granted in modern cosmology. However recent
observational data of supernova indicate that we may live in the under-dense
center of our universe, which makes the Copernican principle challenged. It
thus becomes urgent and important to test the Copernican principle via
cosmological observations. Taking into account that unlike the cosmic photons,
the cosmic neutrinos of different energies come from the different places to us
along the different worldlines, we here propose cosmic neutrino background as a
test of the Copernican principle. It is shown that from the theoretical
perspective cosmic neutrino background can allow one to determine whether the
Copernican principle is valid or not, but to implement such an observation the
larger neutrino detectors are called for.Comment: JHEP style, 10 pages, 4 figures, version to appear in JCA
Cosmological Bounds on Spatial Variations of Physical Constants
We derive strong observational limits on any possible large-scale spatial
variation in the values of physical 'constants' whose space-time evolution is
driven by a scalar field. The limits are imposed by the isotropy of the
microwave background on large angular scales in theories which describe space
and time variations in the fine structure constant, the electron-proton mass
ratio, and the Newtonian gravitational constant, G. Large-scale spatial
fluctuations in the fine structure constant are bounded by 2x10^-9 and
1.2x10^-8 in the BSBM and VSL theories respectively, fluctuations in the
electron-proton mass ratio by 9x10^-5 in the BM theory and fluctuations in G by
3.6x10^-10 in Brans-Dicke theory. These derived bounds are significantly
stronger than any obtainable by direct observations of astrophysical objects at
the present time.Comment: 13 pages, 1 table, typos corrected, refs added. Published versio
Wormholes in spacetime with torsion
Analytical wormhole solutions in theory are presented. It is discussed
whether the extremely short range repulsive forces, related to the spin angular
momentum of matter, could be the ``carrier'' of the exoticity that threads the
wormhole throat.Comment: 10 pages revte
A Wide-Field CCD Survey for Centaurs and Kuiper Belt Objects
A modified Baker-Nunn camera was used to conduct a wide-field survey of 1428
square degrees of sky near the ecliptic in search of bright Kuiper Belt objects
and Centaurs. This area is an order of magnitude larger than any previously
published CCD survey for Centaurs and Kuiper Belt Objects. No new objects
brighter than red magnitude m=18.8 and moving at a rate 1"/hr to 20"/hr were
discovered, although one previously discovered Centaur 1997 CU26 Chariklo was
serendipitously detected. The parameters of the survey were characterized using
both visual and automated techniques. From this survey the empirical projected
surface density of Centaurs was found to be SigmaCentaur(m<18.8)=7.8(+16.0
-6.6)x10^-4 per square degree and we found a projected surface density 3sigma
upper confidence limit for Kuiper Belt objects of SigmaKBO(m< 18.8)<4.1x10^-3
per square degree. We discuss the current state of the cumulative luminosity
functions of both Centaurs and Kuiper Belt objects. Through a Monte Carlo
simulation we show that the size distribution of Centaurs is consistent with a
q=4 differential power law, similar to the size distribution of the parent
Kuiper Belt Objects. The Centaur population is of order 10^7 (radius > 1 km)
assuming a geometric albedo of 0.04. About 100 Centaurs are larger than 50 km
in radius, of which only 4 are presently known. The current total mass of the
Centaurs is 10^-4 Earth Masses. No dust clouds were detected resulting from
Kuiper Belt object collisions, placing a 3sigma upper limit <600 collisionally
produced clouds of m<18.8 per year.Comment: 13 pages, 5 figures, Accepted for Publication in A
Cultures of caste and rural development in the social network of a south Indian village
Cultures of caste in much of rural India have become entangled with institutions of rural development. In community-driven development, emphasis on âlocal resource personsâ and âcommunity spokespersonsâ has created new opportunities for brokerage and patronage within some villages, which interact with existing forms of authority and community afforded by caste identity and intra-caste headmanship. In this article, we study how these entangled cultures of caste and development translate into social network structures using data on friendship ties from a south Indian village. We find that although caste continues to be important in shaping community structures and leadership in the villageâs network, its influence varies across different communities. This fluidity of casteâs influence on community network structures is argued to be the result of multiple distinct yet partially overlapping cultural-political forces, which include sharedness afforded by caste identity and new forms of difference and inequality effected through rural development
Cosmic Acceleration Driven by Mirage Inhomogeneities
A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X
S_5 bulk is introduced. Although there is no special points in the bulk, the
brane Universe has a center and is isotropic around it. The model has an
accelerating expansion and its effective cosmological constant is inversely
proportional to the distance from the center, giving a possible geometrical
origin for the smallness of a present-day cosmological constant. Besides, if
our model is considered as an alternative of early time acceleration, it is
shown that the early stage accelerating phase ends in a dust dominated FRW
homogeneous Universe. Mirage-driven acceleration thus provides a dark matter
component for the brane Universe final state. We finally show that the model
fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections,
references added, version accepted in Class. Quant. Gra
Linearisation Instabilities of the Massive Nonsymmetric Gravitational Theory
The massive nonsymmetric gravitational theory is shown to posses a
linearisation instability at purely GR field configurations, disallowing the
use of the linear approximation in these situations. It is also shown that
arbitrarily small antisymmetric sector Cauchy data leads to singular evolution
unless an ad hoc condition is imposed on the initial data hypersurface.Comment: 14 pages, IOP style for submission to CQG. Minor changes and
additional background material adde
- âŠ