5,014 research outputs found
Exact mean first-passage time on the T-graph
We consider a simple random walk on the T-fractal and we calculate the exact
mean time to first reach the central node . The mean is performed
over the set of possible walks from a given origin and over the set of starting
points uniformly distributed throughout the sites of the graph, except .
By means of analytic techniques based on decimation procedures, we find the
explicit expression for as a function of the generation and of the
volume of the underlying fractal. Our results agree with the asymptotic
ones already known for diffusion on the T-fractal and, more generally, they are
consistent with the standard laws describing diffusion on low-dimensional
structures.Comment: 6 page
Diffusion-Limited One-Species Reactions in the Bethe Lattice
We study the kinetics of diffusion-limited coalescence, A+A-->A, and
annihilation, A+A-->0, in the Bethe lattice of coordination number z.
Correlations build up over time so that the probability to find a particle next
to another varies from \rho^2 (\rho is the particle density), initially, when
the particles are uncorrelated, to [(z-2)/z]\rho^2, in the long-time asymptotic
limit. As a result, the particle density decays inversely proportional to time,
\rho ~ 1/kt, but at a rate k that slowly decreases to an asymptotic constant
value.Comment: To be published in JPCM, special issue on Kinetics of Chemical
Reaction
Wigner Surmise For Domain Systems
In random matrix theory, the spacing distribution functions are
well fitted by the Wigner surmise and its generalizations. In this
approximation the spacing functions are completely described by the behavior of
the exact functions in the limits s->0 and s->infinity. Most non equilibrium
systems do not have analytical solutions for the spacing distribution and
correlation functions. Because of that, we explore the possibility to use the
Wigner surmise approximation in these systems. We found that this approximation
provides a first approach to the statistical behavior of complex systems, in
particular we use it to find an analytical approximation to the nearest
neighbor distribution of the annihilation random walk
Virtual dielectric waveguide mode description of a high-gain free-electron laser I: Theory
A set of mode-coupled excitation equations for the slowly-growing amplitudes
of dielectric waveguide eigenmodes is derived as a description of the
electromagnetic signal field of a high-gain free-electron laser, or FEL,
including the effects of longitudinal space-charge. This approach of describing
the field basis set has notable advantages for FEL analysis in providing an
efficient characterization of eigenmodes, and in allowing a clear connection to
free-space propagation of the input (seeding) and output radiation. The
formulation describes the entire evolution of the radiation wave through the
linear gain regime, prior to the onset of saturation, with arbitrary initial
conditions. By virtue of the flexibility in the expansion basis, this technique
can be used to find the direct coupling and amplification of a particular mode.
A simple transformation converts the derived coupled differential excitation
equations into a set of coupled algebraic equations and yields a matrix
determinant equation for the FEL eigenmodes. A quadratic index medium is used
as a model dielectric waveguide to obtain an expression for the predicted spot
size of the dominant system eigenmode, in the approximation that it is a single
gaussian mode.Comment: 14 page
Characteristics of reaction-diffusion on scale-free networks
We examine some characteristic properties of reaction-diffusion processes of
the A+A->0 type on scale-free networks. Due to the inhomogeneity of the
structure of the substrate, as compared to usual lattices, we focus on the
characteristics of the nodes where the annihilations occur. We show that at
early times the majority of these events take place on low-connectivity nodes,
while as time advances the process moves towards the high-connectivity nodes,
the so-called hubs. This pattern remarkably accelerates the annihilation of the
particles, and it is in agreement with earlier predictions that the rates of
reaction-diffusion processes on scale-free networks are much faster than the
equivalent ones on lattice systems
Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension
We study the diffusion-limited process in one dimension, with
finite reaction rates. We develop an approximation scheme based on the method
of Inter-Particle Distribution Functions (IPDF), which was formerly used for
the exact solution of the same process with infinite reaction rate. The
approximation becomes exact in the very early time regime (or the
reaction-controlled limit) and in the long time (diffusion-controlled)
asymptotic limit. For the intermediate time regime, we obtain a simple
interpolative behavior between these two limits. We also study the coalescence
process (with finite reaction rates) with the back reaction , and in
the presence of particle input. In each of these cases the system reaches a
non-trivial steady state with a finite concentration of particles. Theoretical
predictions for the concentration time dependence and for the IPDF are compared
to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j
05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0
- …
