2,442 research outputs found
Anisotropic glass-like properties in tetragonal disordered crystals
The low temperature acoustic and thermal properties of amorphous, glassy
materials are remarkably similar. All these properties are described
theoretically with reasonable quantitative accuracy by assuming that the
amorphous solid contains dynamical defects that can be described at low
temperatures as an ensemble of two-level systems (TLS), but the deep nature of
these TLSs is not clarified yet. Moreover, glassy properties were found also in
disordered crystals, quasicrystals, and even perfect crystals with a large
number of atoms in the unit cell. In crystals, the glassy properties are not
universal, like in amorphous materials, and also exhibit anisotropy. Recently
it was proposed a model for the interaction of two-level systems with arbitrary
strain fields (Phys. Rev. B 75, 64202, 2007), which was used to calculate the
thermal properties of nanoscopic membranes at low temperatures. The model is
also suitable for the description of anisotropic crystals. We describe here the
results of the calculation of anisotropic glass-like properties in crystals of
various lattice symmetries, emphasizing the tetragonal symmetry.Comment: 5 pages, no figure
SKA HI end2end simulation
The current status of the HI simulation efforts is presented, in which a self
consistent simulation path is described and basic equations to calculate array
sensitivities are given. There is a summary of the SKA Design Study (SKADS) sky
simulation and a method for implementing it into the array simulator is
presented. A short overview of HI sensitivity requirements is discussed and
expected results for a simulated HI survey are presented.Comment: 7 pages, 6 figues, need skads2009.cls file to late
Scattering of phonons on two-level systems in disordered crystals
We calculate the scattering rates of phonons on two-level systems in
disordered trigonal and hexagonal crystals. We apply a model in which the
two-level system, characterized by a direction in space, is coupled to the
strain field of the phonon via a tensor of coupling constants. The structure of
the tensor of coupling constants is similar to the structure of the tensor of
elastic stiffness constants, in the sense that they are determined by the same
symmetry transformations. In this way, we emphasize the anisotropy of the
interaction of elastic waves with the ensemble of two-level systems in
disordered crystals. We also point to the fact that the ratio
has a much broader range of allowed values in disordered
crystals than in isotropic solids.Comment: 5 pages, no figure
Herbicide impacts on exotic grasses and a population of the critically endangered herb "Calystegia affinis" (Convolvulaceae) on Lord Howe Island
Introduced perennial grasses are capable of altering the habitat of native species, causing reductions in population size and vigour, and potentially affecting life-history processes such as survival, pollination and seedling recruitment. We examined the utility of herbicide treatment on two exotic grasses, Pennisetum clandestinum (Kikuyu) and Stenotaphrum secundatum (Buffalo grass) to restore the habitat of Calystegia affinis, a critically endangered species endemic to Lord Howe and Norfolk Islands. Using two herbicides, Asset (designed to affect only grasses) and Glyphosate (a general herbicide), we compared effectiveness in reducing grass cover on a population of Calystegia affinis. We protected Calystegia plants from the herbicides by ensuring their leaves were covered by plastic bags during herbicide application. Both herbicides were similarly effective in reducing grass cover after four weeks and had no noticeable adverse affect on Calystegia (suggesting the plastic bag protection was effective). After 26 weeks, Glyphosate was more effective in maintaining a reduced grass cover. Plots treated with either herbicide had a greater relative increase in abundance of Calystegia stems compared to untreated controls. The Glyphosate treatment resulted in the greatest relative increase in stem abundance, but this was not significantly greater than in the Asset treatment. We consider that spraying with Glyphosate treatment, with follow-up monitoring and spot-spraying, will assist the recovery of the Calystegia affinis population. Ultimately, the maintenance of a weed-free zone at the forest edge will provide suitable habitat for additional recruitment of this and other native species
Curriculum Development: A Report for the International Baccalaureate Organisation (IBO)
This report examines the development and revision of curricula in jurisdictions, regions and countries round the world. In addition, it provides examples which could further inform the International Baccalaureate Organisation’s (IBO) own curriculum development. We identified thirteen countries and jurisdictions that we thought likely to be productive locations for learning in relation to curriculum development and reform: Finland; Massachusetts, USA; Scotland; Ontario, Canada; Netherlands; Mexico; Germany; England; Chile; Singapore; New Zealand; Victoria, Australia; and Queensland, Australia. Our sources of information included government documents as well as books, and academic and professional journal articles. We collected information about a wide range of issues, from the organization of schooling in these different countries, to the aims and purposes of their curricula, and their arrangements for delivery and assessment
Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes
Using a generalized model of interaction between a two-level system (TLS) and
an arbitrary deformation of the material, we calculate the interaction of Lamb
modes with TLSs in amorphous nanoscopic membranes. We compare the mean free
paths of the Lamb modes with different symmetries and calculate the heat
conductivity . In the limit of an infinitely wide membrane, the heat
conductivity is divergent. Nevertheless, the finite size of the membrane
imposes a lower cut-off for the phonons frequencies, which leads to the
temperature dependence . This temperature dependence
is a hallmark of the TLS-limited heat conductance at low temperature.Comment: 9 pages, 2 figure
A switch in keystone seed-dispersing ant genera between two elevations for a myrmecochorous plant, acacia terminalis
© 2016 Thomson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The dispersal capacity of plant species that rely on animals to disperse their seeds (biotic dispersal) can alter with changes to the populations of their keystone dispersal vectors. Knowledge on how biotic dispersal systems vary across landscapes allows better understanding of factors driving plant persistence. Myrmecochory, seed dispersal by ants, is a common method of biotic dispersal for many plant species throughout the world. We tested if the seed dispersal system of Acacia terminalis (Fabaceae), a known myrmecochore, differed between two elevations in the Greater Blue Mountains World Heritage Area, in southeastern Australia. We compared ant assemblages, seed removal rates of ants and other vertebrates (bird and mammal) and the dominant seed-dispersing ant genera. At low elevations (c. 200 m a.s.l) seed removal was predominantly by ants, however, at high elevation sites (c. 700 m a.s.l) vertebrate seed dispersers or seed predators were present, removing over 60% of seeds from experimental depots when ants were excluded. We found a switch in the keystone seed-dispersing ant genera from Rhytidoponera at low elevations sites to Aphaenogaster at high elevation sites. This resulted in more seeds being removed faster at low elevation sites compared to high elevation sites, however long-term seed removal rates were equal between elevations. Differences in the keystone seed removalist, and the addition of an alternate dispersal vector or seed predator at high elevations, will result in different dispersal and establishment patterns for A. terminalis at different elevations. These differences in dispersal concur with other global studies that report myrmecochorous dispersal systems alter with elevation
Quantization of the elastic modes in an isotropic plate
We quantize the elastic modes in a plate. For this, we find a complete,
orthogonal set of eigenfunctions of the elastic equations and we normalize
them. These are the phonon modes in the plate and their specific forms and
dispersion relations are manifested in low temperature experiments in
ultra-thin membranes.Comment: 14 pages, 2 figure
Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing
We describe the design for a scalable, solid-state
quantum-information-processing architecture based on the integration of
GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which
has the potential for demonstrating a variety of single- and multi-qubit
operations critical to quantum computation. The computational qubits are
eigenstates of large-area, current-biased Josephson junctions, manipulated and
measured using strobed external circuitry. Two or more of these phase qubits
are capacitively coupled to a high-quality-factor piezoelectric
nanoelectromechanical disk resonator, which forms the backbone of our
architecture, and which enables coherent coupling of the qubits. The integrated
system is analogous to one or more few-level atoms (the Josephson junction
qubits) in an electromagnetic cavity (the nanomechanical resonator). However,
unlike existing approaches using atoms in electromagnetic cavities, here we can
individually tune the level spacing of the ``atoms'' and control their
``electromagnetic'' interaction strength. We show theoretically that quantum
states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original
junction or transferred to another with high fidelity. The resonator can also
be used to produce maximally entangled Bell states between a pair of Josephson
junctions. Many such junction-resonator complexes can assembled in a
hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed
architecture combines desirable features of both solid-state and cavity quantum
electrodynamics approaches, and could make quantum information processing
possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure
- …
