981 research outputs found

    A new solution to the problem of range identification in perspective vision systems

    No full text
    Published versio

    Editorial on special issue “wind turbine power optimization technology”

    Get PDF
    This Special Issue collects innovative contributions in the field of wind turbine optimization technology. The general motivation of the present Special Issue is given by the fact that there has recently been a considerable boost of the quest for wind turbine efficiency optimization in the academia and in the wind energy practitioners communities. The optimization can be focused on technology and operation of single turbine or a group of machines within a wind farm. This perspective is evidently multi-faced and the seven papers composing this Special Issue provide a representative picture of the most ground-breaking state of the art about the subject. Wind turbine power optimization means scientific research about the design of innovative aerodynamic solutions for wind turbine blades and of wind turbine single or collective control, especially for increasing rotor size and exploitation in offshore environment. It should be noticed that some recently developed aerodynamic and control solutions have become available in the industry practice and therefore an interesting line of development is the assessment of the actual impact of optimization technology for wind turbines operating in field: this calls for non-trivial data analysis and statistical methods. The optimization approach must be 360 degrees; for this reason also offshore resource should be addressed with the most up to date technologies such as floating wind turbines, in particular as regards support structures and platforms to be employed in ocean environment. Finally, wind turbine power optimization means as well improving wind farm efficiency through innovative uses of pre-existent control techniques: this is employed, for example, for active control of wake interactions in order to maximize the energy yield and minimize the fatigue loads

    BCI-assisted training for upper limb motor rehabilitation: estimation of effects on individual brain connectivity and motor functions

    Get PDF
    The aim of the study is to quantify individual changes in scalp connectivity patterns associated to the affected hand movement in stroke patients after a 1-month training based on BCIsupported motor imagery to improve upper limb motor recovery. To perform the statistical evaluation between pre- and post-training conditions at the single subject level, a resampling approach was applied to EEG datasets acquired from 12 stroke patients during the execution of a motor task with the stroke affected hand before and after the rehabilitative intervention. Significant patterns of the network reinforced after the training were extracted and a significant correlation was found between indices related to the reinforced pattern and the clinical outcome indicated by clinical scales

    Crowd-Averse Robust Mean-Field Games: Approximation via State Space Extension

    Get PDF
    We consider a population of dynamic agents, also referred to as players. The state of each player evolves according to a linear stochastic differential equation driven by a Brownian motion and under the influence of a control and an adversarial disturbance. Every player minimizes a cost functional which involves quadratic terms on state and control plus a crosscoupling mean-field term measuring the congestion resulting from the collective behavior, which motivates the term “crowdaverse”. Motivations for this model are analyzed and discussed in three main contexts: a stock market application, a production engineering example, and a dynamic demand management problem in power systems. For the problem in its abstract formulation, we illustrate the paradigm of robust mean-field games. Main contributions involve first the formulation of the problem as a robust mean-field game; second, the development of a new approximate solution approach based on the extension of the state space; third, a relaxation method to minimize the approximation error. Further results are provided for the scalar case, for which we establish performance bounds, and analyze stochastic stability of both the microscopic and the macroscopic dynamics

    Eliminating ambiguities for quantum corrections to strings moving in AdS4×CP3AdS_4\times \mathbb{CP}^3

    Full text link
    We apply a physical principle, previously used to eliminate ambiguities in quantum corrections to the 2 dimensional kink, to the case of spinning strings moving in AdS4×CP3AdS_4\times \mathbb{CP}^3, thought of as another kind of two dimensional soliton. We find that this eliminates the ambiguities and selects the result compatible with AdS/CFT, providing a solid foundation for one of the previous calculations, which found agreement. The method can be applied to other classical string "solitons".Comment: 18 pages, latex; references added, comments added at end of section 4, a few words changed; footnote added on page 1

    Dynamic vs static scaling: an existence result

    No full text
    International audienceThe relation between static and dynamic control Lyapunov functions scaling is discussed. It is shown that, under some technical assumptions, stabilizability by means of static scaling implies stabilizability by means of dynamic scaling. A motivating example and a worked out design example complement the theoretical part

    Analysis of wind turbine aging through operation curves

    Get PDF
    The worsening with age of technical systems performance is a matter of fact which is particularly timely to analyze for horizontal-axis wind turbines because they constitute a mature technology. On these grounds, the present study deals with the assessment of wind turbine performance decline with age. The selected test case is a Vestas V52 wind turbine, installed in 2005 at the Dundalk Institute of Technology campus in Ireland. Operation data from 2008 to 2019 have been used for this study. The general idea is analyzing the appropriate operation curves for each working region of the wind turbine: in Region 2 (wind speed between 5 and 9 m/s), the generator speed.power curve is studied, because the wind turbine operates at fixed pitch. In Region 2 1/2 (wind speed between 9 and 13 m/s), the generator speed is rated and the pitch control is relevant: therefore, the pitch angle.power curve is analyzed. Using a support vector regression for the operation curves of interest, it is observed that in Region 2, a progressive degradation occurs as regards the power extracted for given generator speed, and after ten years (from 2008 to 2018), the average production has diminished of the order of 8%. In Region 2 1/2, the performance decline with age is less regular and, after ten years of operation, the performance has diminished averagely of the 1.3%. The gearbox of the test case wind turbine was substituted with a brand new one at the end of 2018, and it results that the performance in Region 2 1/2 has considerably improved after the gearbox replacement (+3% in 2019 with respect to 2018, +1.7% with respect to 2008), while in Region 2, an improvement is observed (+1.9% in 2019 with respect to 2018) which does not compensate the ten-year period decline (-6.5% in 2019 with respect to 2008). Therefore, the lesson is that for the test case wind turbine, the generator aging impacts remarkably on the power production in Region 2, while in Region 2 1/2, the impact of the gearbox aging dominates over the generator aging; for this reason, wind turbine refurbishment or component replacement should be carefully considered on the grounds of the wind intensity distribution onsite

    Estimation of the performance aging of the vestas V52 wind turbine through comparative test case analysis

    Get PDF
    It is a common sense expectation that the efficiency of wind turbines should decline with age, similarly to what happens with most technical systems. Due to the complexity of this kind of machine and the environmental conditions to which it is subjected, it is far from obvious how to reliably estimate the impact of aging. In this work, the aging of five Vestas V52 wind turbines is analyzed. The test cases belong to two different sites: one is at the Dundalk Institute of Technology in Ireland, and four are sited in an industrial wind farm in a mountainous area in Italy. Innovative data analysis techniques are employed: the general idea consists of considering appropriate operation curves depending on the working control region of the wind turbines. When the wind turbine operates at fixed pitch and variable rotational speed, the generator speed-power curve is studied; for higher wind speed, when the rotational speed has saturated and the blade pitch is variable, the blade pitch-power curve is considered. The operation curves of interest are studied through the binning method and through a support vector regression with a Gaussian kernel. The wind turbine test cases are analyzed vertically (each in its own history) and horizontally, by comparing the behavior at the two sites for the given wind turbine age. The main result of this study is that an evident effect of aging is the worsening of generator efficiency: progressively, less power is extracted for the given generator rotational speed. Nevertheless, this effect is observed to be lower for the wind turbines in Italy (order of −1.5% at 12 years of age with respect to seven years of age) with respect to the Dundalk wind turbine, which shows a sharp decline at 12 years of age (−8.8%). One wind turbine sited in Italy underwent a generator replacement in 2018: through the use of the same kind of data analysis methods, it was possible to observe that an average performance recovery of the order of 2% occurs after the component replacement. It also arises that for all the test cases, a slight aging effect is visible for higher wind speed, which can likely be interpreted as due to declining gearbox efficiency. In general, it is confirmed that the aging of wind turbines is strongly dependent on the history of each machine, and it is likely confirmed that the technology development mitigates the effect of aging

    Scada data analysis methods for diagnosis of electrical faults to wind turbine generators

    Get PDF
    The electric generator is estimated to be among the top three contributors to the failure rates and downtime of wind turbines. For this reason, in the general context of increasing interest towards effective wind turbine condition monitoring techniques, fault diagnosis of electric generators is particularly important. The objective of this study is contributing to the techniques for wind turbine generator fault diagnosis through a supervisory control and data acquisition (SCADA) analysis method. The work is organized as a real-world test-case discussion, involving electric damage to the generator of a Vestas V52 wind turbine sited in southern Italy. SCADA data before and after the generator damage have been analyzed for the target wind turbine and for reference healthy wind turbines from the same site. By doing this, it has been possible to formulate a normal behavior model, based on principal component analysis and support vector regression, for the power and for the voltages and currents of the wind turbine. It is shown that the incipience of the fault can be individuated as a change in the behavior of the residuals between model estimates and measurements. This phenomenon was clearly visible approximately two weeks before the fault. Considering the fast evolution of electrical damage, this result is promising as regards the perspectives of exploiting SCADA data for individuating electric damage with an advance that can be useful for applications in wind energy practice
    corecore