61 research outputs found

    The Gut Fungus Basidiobolus ranarum Has a Large Genome and Different Copy Numbers of Putatively Functionally Redundant Elongation Factor Genes

    Get PDF
    Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes. Using DNA sequencing and a quantitative PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL was in three times the copy number of its putatively functionally overlapping paralog EF-1α. This suggests that gene or genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have mechanisms in place that favor the preservation of functionally overlapping genes

    Structural studies on Neurospora RNA polymerases and associated proteins.

    No full text

    Depside and depsidone synthesis in lichenized fungi comes into focus through a genome-wide comparison of the olivetoric acid and physodic acid chemotypes of pseudevernia furfuracea

    Get PDF
    Primary biosynthetic enzymes involved in the synthesis of lichen polyphenolic compounds depsides and depsidones are non-reducing polyketide synthases (NR-PKSs), and cytochrome P450s. However, for most depsides and depsidones the corresponding PKSs are unknown. Additionally, in non-lichenized fungi specific fatty acid synthases (FASs) provide starters to the PKSs. Yet, the presence of such FASs in lichenized fungi remains to be investigated. Here we implement comparative genomics and metatranscriptomics to identify the most likely PKS and FASs for olivetoric acid and physodic acid biosynthesis, the primary depside and depsidone defining the two chemotypes of the lichen Pseudevernia furfuracea. We propose that the gene cluster PF33-1_006185, found in both chemotypes, is the most likely candidate for the olivetoric acid and physodic acid biosynthesis. This is the first study to identify the gene cluster and the FAS likely responsible for olivetoric acid and physodic acid biosynthesis in a lichenized fungus. Our findings suggest that gene regulation and other epigenetic factors determine whether the mycobiont produces the depside or the depsidone, providing the first direct indication that chemotype diversity in lichens can arise through regulatory and not only through genetic diversity. Combining these results and existing literature, we propose a detailed scheme for depside/depsidone synthesis

    Purification of the three nuclear RNA polymerases from Neurospora crassa.

    No full text

    Dismantling the treasured flagship lichen Sticta fuliginosa (Peltigerales) into four species in Western Europe

    Full text link
    In the framework of a worldwide project on the phylogeny of the lichen genus Sticta, dedicated sampling was performed in four regions of Western Europe, roughly along an East-West line between N 48°02’ E 07°01’ and N 52°01’ W 09°30’, ranging from France/Vosges to Ireland/Kerry. Five clearly distinct ITS haplotypes were detected for isidia-producing species where only two were expected. Subtle anatomical and morphological characters, together with a strongly supported 4-loci molecular phylogeny, permit to distinguish, besides the easily recognized S. canariensis and S. limbata: • the two « well-known » S. fuliginosa and S. sylvatica whose type collections have been carefully reassessed; the former is widespread in both hemispheres, while the latter is correctly identified only from continental Europe and the Andes in Colombia; the barcode ITS of S. fuliginosa differs by a single substitution from S. limbata (with a single exception), and the 4-loci phylogenetic tree does not resolve them as distinct lineages, most probably highlighting a very recent divergence and incomplete lineage sorting; • three species that were formely included in S. fuliginosa: the resurrected S. ciliata Taylor, belonging to a complex group yet to be disentangled and occurring in the Neotropics, Africa, Macaronesia and Western Europe, and two species described as new for science, S. fuliginoides, found in continental Europe, the Canary Islands, eastern North America and Colombia, and S. atlantica only known from Ireland and the Azores archipelago. Molecular inferences demonstrate active divergence and dispersion within S. ciliata that may require recognition of further species. Fresh material can be identified with a morphological and anatomical preliminary key provided here. We propose that the taxonomy of all lichen species be urgently reviewed in the light of molecular data in an evolutionary context, particularly those used as bioindicators of environmental change and woodland management
    corecore