8 research outputs found

    The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset

    Get PDF
    RATIONALE: Exposure of the immature mammalian brain to stress factors, including stress levels of glucocorticoids, either prenatally or postnatally, is regarded as a major regulatory factor in short- and long-term brain function and, in human, as a major aetiological factor in neuropsychiatric disorders. Experimental human studies are not feasible and animal studies are required to demonstrate causality and elucidate mechanisms. A number of studies have been conducted and reviewed in rodents but there are relatively few studies in primates. OBJECTIVES: Here we present an overview of our published studies and some original data on the effects of: (1) prenatal stress on hypothalamic-pituitary-adrenal (HPA) re/activity and hippocampus neuroanatomy in juvenile-adolescent rhesus macaques; (2) prenatal dexamethasone (DEX) on HPA activity, behaviour and prefrontal cortex neuroanatomy in infant-adolescent common marmosets; (3) postnatal daily parental separation stress on HPA re/activity, behaviour, sleep and hippocampus and prefrontal cortex neuroanatomy in infant-adolescent common marmoset. RESULTS: Prenatal stress increased basal cortisol levels and reduced neurogenesis in macaque. Prenatal DEX was without effect on HPA activity and reduced social play and skilled motor behaviour in marmoset. Postnatal social stress increased basal cortisol levels, reduced social play, increased awakening and reduced hippocampal glucocorticoid and mineralocorticoid receptor expression in marmoset. CONCLUSIONS: Perinatal stress-related environmental events exert short- and long-term effects on HPA function, behaviour and brain status in rhesus macaque and common marmoset. The mechanisms mediating the enduring effects remain to be elucidated, with candidates including increased basal HPA function and epigenetic programming

    Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice

    Full text link
    Although glycine is a major inhibitory transmitter in the mammalian CNS, the role of glycinergic neurons in defined neuronal circuits remains ill defined. This is due in part to difficulties in identifying these cells in living slice preparations for electrophysiological recordings and visualizing their axonal projections. To facilitate the morphological and functional analysis of glycinergic neurons, we generated bacterial artificial chromosome (BAC) transgenic mice, which specifically express enhanced green fluorescent protein (EGFP) under the control of the promotor of the glycine transporter (GlyT) 2 gene, which is a reliable marker for glycinergic neurons. Neurons expressing GlyT2-EGFP were intensely fluorescent, and their dendrites and axons could be visualized in great detail. Numerous positive neurons were detected in the spinal cord, brainstem, and cerebellum. The hypothalamus, intralaminar nuclei of the thalamus, and basal forebrain also received a dense GlyT2-EGFP innervation, whereas in the olfactory bulb, striatum, neocortex, hippocampus, and amygdala positive fibers were much less abundant. No GlyT2-EGFP-positive cell bodies were seen in the forebrain. On the subcellular level, GlyT2-EGFP fluorescence was colocalized extensively with glycine immunoreactivity in somata and dendrites and with both glycine and GlyT2 immunoreactivity in axon terminals, as shown by triple staining at all levels of the neuraxis, confirming the selective expression of the transgene in glycinergic neurons. In slice preparations of the spinal cord, no difference between the functional properties of EGFP-positive and negative neurons could be detected, confirming the utility of visually identifying glycinergic neurons to investigate their functional role in electrophysiological studies

    Primate early life stress leads to long-term mild hippocampal decreases in corticosteroid receptor expression

    Full text link
    In adolescent marmoset monkey brains, reduced hippocampal expression of MR and GR are consistent chronic-indicators of ELS. It is unlikely that these chronic, mild, specific reductions were acute-mediators of the observed long-term emotional effects of ELS. However, they do suggest involvement of hippocampal MR/GR in the neurodevelopmental effects of ELS

    Epileptiform activity contralateral to unilateral hippocampal sclerosis does not cause the expression of brain damage markers

    No full text
    OBJECTIVE: Patients with epilepsy often ask if recurrent seizures harm their brain and aggravate their epileptic condition. This crucial question has not been specifically addressed by dedicated experiments. We analyze here if intense bilateral seizure activity induced by local injection of kainic acid (KA) in the right hippocampus produces brain damage in the left hippocampus. METHODS: Adult guinea pigs were bilaterally implanted with hippocampal electrodes for continuous video-electroencephalography (EEG) monitoring. Unilateral injection of 1 μg KA in the dorsal CA1 area induced nonconvulsive status epilepticus (ncSE) characterized by bilateral hippocampal seizure discharges. This treatment resulted in selective unilateral sclerosis of the KA-injected hippocampus. Three days after KA injection, the animals were killed, and the brains were submitted to ex vivo magnetic resonance imaging (MRI) and were processed for immunohistochemical analysis. RESULTS: During ncSE, epileptiform activity was recorded for 27.6 ± 19.1 hours in both the KA-injected and contralateral hippocampi. Enhanced T1-weighted MR signal due to gadolinium deposition, mean diffusivity reduction, neuronal loss, gliosis, and blood-brain barrier permeability changes was observed exclusively in the KA-injected hippocampus. Despite the presence of a clear unilateral hippocampal sclerosis at the site of KA injection, no structural alterations were detected by MR and immunostaining analysis performed in the hippocampus contralateral to KA injection 3 days and 2 months after ncSE induction. Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at the same time points confirmed the absence of degenerating cells in the hippocampi contralateral to KA injection. SIGNIFICANCE: We demonstrate that intense epileptiform activity during ncSE does not cause obvious brain damage in the hippocampus contralateral to unilateral hippocampal KA injection. These findings argue against the hypothesis that epileptiform activity per se contributes to focal brain injury in previously undamaged cortical regions

    Assisted Reproductive Technology: Stress-Related Epigenetic and Neurodevelopmental Risk?

    No full text
    corecore