1,013 research outputs found
Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor IrPtTe
We have studied electronic structure of triangular lattice
IrPtTe superconductor using photoemission spectroscopy and
model calculations. Ir core-level photoemission spectra show that Ir
charge modulation established in the low temperature phase of IrTe
is suppressed by Pt doping. This observation indicates that the suppression of
charge modulation is related to the emergence of superconductivity.
Valence-band photoemission spectra of IrTe suggest that the Ir charge
modulation is accompanied by Ir orbital reconstruction. Based on the
photoemission results and model calculations, we argue that the
orbitally-induced Peierls effect governs the charge and orbital instability in
the IrPtTe.Comment: 5 pages,4 figure
Electronic structure of NiSSe across the phase transition
We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across
the so-called metal-insulator transition as a function of temperature as well
as composition. The present results convincingly demonstrate that the low
temperature, antiferromagnetic phase is metallic, with a reduced density of
states at E. This decrease is possibly due to the opening of gaps along
specific directions in the Brillouin zone caused by the antiferromagnetic
ordering.Comment: Revtex, 4 pages, 3 postscript figure
Electronic structure reconstruction by orbital symmetry breaking in IrTe2
We report an angle-resolved photoemission spectroscopy (ARPES) study on IrTe2
which exhibits an interesting lattice distortion below 270 K and becomes
triangular lattice superconductors by suppressing the distortion via chemical
substitution or intercalation. ARPES results at 300 K show multi-band Fermi
surfaces with six-fold symmetry which are basically consistent with band
structure calculations. At 20 K in the distorted phase, whereas the flower
shape of the outermost Fermi surface does not change from that at 300 K,
topology of the inner Fermi surfaces is strongly modified by the lattice
distortion. The Fermi surface reconstruction by the distortion depends on the
orbital character of the Fermi surfaces, suggesting importance of Ir 5d and/or
Te 5p orbital symmetry breaking.Comment: 4pages, 4figure
Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2
We report an angle-resolved photoemission spectroscopy (ARPES) study on a
triangular lattice superconductor IrPtTe in which the Ir-Ir
or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit
interaction are cooperating and competing with one another. The Fermi surfaces
of the substituted system are qualitatively similar to the band structure
calculations for the undistorted IrTe with an upward chemical potential
shift due to electron doping. A combination of the ARPES and the band structure
calculations indicates that the Te spin-orbit interaction removes the
orbital degeneracy and induces type spin-orbit
coupling near the A point. The inner and outer Fermi surfaces are entangled by
the Te and Ir spin-orbit interactions which may provide exotic
superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure
Electronic structure of NiS_{1-x}Se_x
We investigate the electronic structure of the metallic NiSSe
system using various electron spectroscopic techniques. The band structure
results do not describe the details of the spectral features in the
experimental spectrum, even for this paramagnetic metallic phase. However, a
parameterized many-body multi-band model is found to be successful in
describing the Ni~2 core level and valence band, within the same model. The
asymmetric line shape as well as the weak intensity feature in the Ni~2 core
level spectrum has been ascribed to extrinsic loss processes in the system. The
presence of satellite features in the valence band spectrum shows the existence
of the lower Hubbard band, deep inside the metallic regime, consistent
with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure
Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential
Using the nonrelativistic effective field theory vNRQCD, we determine the
contribution to the next-to-leading logarithmic (NLL) running of the effective
quark-antiquark potential at order v (1/mk) from diagrams with one potential
and two ultrasoft loops, v being the velocity of the quarks in the c.m. frame.
The results are numerically important and complete the description of ultrasoft
next-to-next-to-leading logarithmic (NNLL) order effects in heavy quark pair
production and annihilation close to threshold.Comment: 25 pages, 7 figures, 3 tables; minor modifications, typos corrected,
references added, footnote adde
- …
