45,904 research outputs found

    The number of nilpotent semigroups of degree 3

    Full text link
    A semigroup is \emph{nilpotent} of degree 3 if it has a zero, every product of 3 elements equals the zero, and some product of 2 elements is non-zero. It is part of the folklore of semigroup theory that almost all finite semigroups are nilpotent of degree 3. We give formulae for the number of nilpotent semigroups of degree 3 with nNn\in\N elements up to equality, isomorphism, and isomorphism or anti-isomorphism. Likewise, we give formulae for the number of nilpotent commutative semigroups with nn elements up to equality and up to isomorphism

    Deep Gaussian Processes

    Full text link
    In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples.Comment: 9 pages, 8 figures. Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 201

    Reply to "Comment on 'Z2-slave-spin theory for strongly correlated fermions' "

    Full text link
    We show that the physical subspace in the Z2-slave-spin theory is conserved under the time evolution of the system. Thus, when restricted to the physical subspace, this representation gives a complete and consistent description of the original problem. In addition, we review two known examples from the existing literature in which the projection onto the physical subspace can be relaxed: (i) the non-interacting limit in any dimension at half filling and (ii) the interacting model in the infinite dimensional limit at half filling. In both cases, physical observables are correctly obtained without explicit treatment of the constraints which define the physical subspace. In these examples, correct results are obtained, despite the fact that unphysical states enter the solution.Comment: Reply to http://link.aps.org/doi/10.1103/PhysRevB.87.03710

    Emergent multipolar spin correlations in a fluctuating spiral - The frustrated ferromagnetic S=1/2 Heisenberg chain in a magnetic field

    Full text link
    We present the phase diagram of the frustrated ferromagnetic S=1/2 Heisenberg J_1-J_2 chain in a magnetic field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive spiral states towards spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light on previously discovered spin-multipolar phases in two-dimensional S=1/2S=1/2 quantum magnets in a magnetic field.Comment: 4+ pages, 4 figure

    A laminar organization for selective cortico-cortical communication

    Get PDF
    The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and synaptic architectures must differ so that they result in distinct computations at the target projection neurons. In what ways do these pathways differ? By originating and terminating in different laminae, and by selectively targeting specific populations of excitatory and inhibitory neurons, these “interareal” pathways can differentially control the timing and strength of synaptic inputs onto individual neurons, resulting in layer-specific computations. Due to the rapid development in transgenic techniques, the mouse has emerged as a powerful mammalian model for understanding the rules by which cortical circuits organize and function. Here we review our understanding of how cortical lamination constrains long-range communication in the mammalian brain, with an emphasis on the mouse visual cortical network. We discuss the laminar architecture underlying interareal communication, the role of neocortical layers in organizing the balance of excitatory and inhibitory actions, and highlight the structure and function of layer 1 in mouse visual cortex
    corecore