131 research outputs found
Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations
What singles out quantum mechanics as the fundamental theory of Nature? Here
we study local measurements in generalised probabilistic theories (GPTs) and
investigate how observational limitations affect the production of
correlations. We find that if only a subset of typical local measurements can
be made then all the bipartite correlations produced in a GPT can be simulated
to a high degree of accuracy by quantum mechanics. Our result makes use of a
generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can
go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul
Extensions and degenerations of spectral triples
For a unital C*-algebra A, which is equipped with a spectral triple and an
extension T of A by the compacts, we construct a family of spectral triples
associated to T and depending on the two positive parameters (s,t).
Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact
quantum metric spaces it is possible to define a metric on this family of
spectral triples, and we show that the distance between a pair of spectral
triples varies continuously with respect to the parameters. It turns out that a
spectral triple associated to the unitarization of the algebra of compact
operators is obtained under the limit - in this metric - for (s,1) -> (0, 1),
while the basic spectral triple, associated to A, is obtained from this family
under a sort of a dual limiting process for (1, t) -> (1, 0).
We show that our constructions will provide families of spectral triples for
the unitarized compacts and for the Podles sphere. In the case of the compacts
we investigate to which extent our proposed spectral triple satisfies Connes' 7
axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s
sphere plus comments on the relations to matricial quantum metrics. In ver.3
the word "deformations" in the original title has changed to "degenerations"
and some illustrative remarks on this aspect are adde
The Lattice and Simplex Structure of States on Pseudo Effect Algebras
We study states, measures, and signed measures on pseudo effect algebras with
some kind of the Riesz Decomposition Property, (RDP). We show that the set of
all Jordan signed measures is always an Abelian Dedekind complete -group.
Therefore, the state space of the pseudo effect algebra with (RDP) is either
empty or a nonempty Choquet simplex or even a Bauer simplex. This will allow
represent states on pseudo effect algebras by standard integrals
Entropy on Spin Factors
Recently it has been demonstrated that the Shannon entropy or the von Neuman
entropy are the only entropy functions that generate a local Bregman
divergences as long as the state space has rank 3 or higher. In this paper we
will study the properties of Bregman divergences for convex bodies of rank 2.
The two most important convex bodies of rank 2 can be identified with the bit
and the qubit. We demonstrate that if a convex body of rank 2 has a Bregman
divergence that satisfies sufficiency then the convex body is spectral and if
the Bregman divergence is monotone then the convex body has the shape of a
ball. A ball can be represented as the state space of a spin factor, which is
the most simple type of Jordan algebra. We also study the existence of recovery
maps for Bregman divergences on spin factors. In general the convex bodies of
rank 2 appear as faces of state spaces of higher rank. Therefore our results
give strong restrictions on which convex bodies could be the state space of a
physical system with a well-behaved entropy function.Comment: 30 pages, 6 figure
The structure of the quantum mechanical state space and induced superselection rules
The role of superselection rules for the derivation of classical probability
within quantum mechanics is investigated and examples of superselection rules
induced by the environment are discussed.Comment: 11 pages, Standard Latex 2.0
Compact convex sets with prescribed facial dimensions
While faces of a polytope form a well structured lattice, in which faces of each possible dimension are present, this is not true for general compact convex sets. We address the question of what dimensional patterns are possible for the faces of general closed convex sets. We show that for any finite sequence of positive integers there exist compact convex sets which only have extreme points and faces with dimensions from this prescribed sequence. We also discuss another approach to dimensionality, considering the dimension of the union of all faces of the same dimension. We show that the questions arising from this approach are highly nontrivial and give examples of convex sets for which the sets of extreme points have fractal dimension
Compact convex sets with prescribed facial dimensions
While faces of a polytope form a well structured lattice, in which faces of each possible dimension are present, this is not true for general compact convex sets. We address the question of what dimensional patterns are possible for the faces of general closed convex sets. We show that for any finite sequence of positive integers there exist compact convex sets which only have extreme points and faces with dimensions from this prescribed sequence. We also discuss another approach to dimensionality, considering the dimension of the union of all faces of the same dimension. We show that the questions arising from this approach are highly nontrivial and give examples of convex sets for which the sets of extreme points have fractal dimension
Smearing of Observables and Spectral Measures on Quantum Structures
An observable on a quantum structure is any -homomorphism of quantum
structures from the Borel -algebra of the real line into the quantum
structure which is in our case a monotone -complete effect algebras
with the Riesz Decomposition Property. We show that every observable is a
smearing of a sharp observable which takes values from a Boolean
-subalgebra of the effect algebra, and we prove that for every element
of the effect algebra there is its spectral measure
Characterizing Operations Preserving Separability Measures via Linear Preserver Problems
We use classical results from the theory of linear preserver problems to
characterize operators that send the set of pure states with Schmidt rank no
greater than k back into itself, extending known results characterizing
operators that send separable pure states to separable pure states. We also
provide a new proof of an analogous statement in the multipartite setting. We
use these results to develop a bipartite version of a classical result about
the structure of maps that preserve rank-1 operators and then characterize the
isometries for two families of norms that have recently been studied in quantum
information theory. We see in particular that for k at least 2 the operator
norms induced by states with Schmidt rank k are invariant only under local
unitaries, the swap operator and the transpose map. However, in the k = 1 case
there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3
simplified and clarifie
Information-theoretic postulates for quantum theory
Why are the laws of physics formulated in terms of complex Hilbert spaces?
Are there natural and consistent modifications of quantum theory that could be
tested experimentally? This book chapter gives a self-contained and accessible
summary of our paper [New J. Phys. 13, 063001, 2011] addressing these
questions, presenting the main ideas, but dropping many technical details. We
show that the formalism of quantum theory can be reconstructed from four
natural postulates, which do not refer to the mathematical formalism, but only
to the information-theoretic content of the physical theory. Our starting point
is to assume that there exist physical events (such as measurement outcomes)
that happen probabilistically, yielding the mathematical framework of "convex
state spaces". Then, quantum theory can be reconstructed by assuming that (i)
global states are determined by correlations between local measurements, (ii)
systems that carry the same amount of information have equivalent state spaces,
(iii) reversible time evolution can map every pure state to every other, and
(iv) positivity of probabilities is the only restriction on the possible
measurements.Comment: 17 pages, 3 figures. v3: some typos corrected and references updated.
Summarizes the argumentation and results of arXiv:1004.1483. Contribution to
the book "Quantum Theory: Informational Foundations and Foils", Springer
Verlag (http://www.springer.com/us/book/9789401773027), 201
- …