370 research outputs found

    The Effects of an Exercise Program on Cardiovascular Risk Factors at a Faith Based University

    Get PDF
    Physical inactivity is a significant risk factor for heart disease, hypertension, stroke, diabetes, and certain types of cancer according to the World Health Organization (WHO, 2013). A simple form of physical activity that improves health and also has a high adherence rate is walking (Dishman, 1994). Walking has been shown to lower fasting blood glucose, decrease total cholesterol, and reduce hypertension when introduced to college faculty and staff as part of a comprehensive wellness program (Haines, 2007). PURPOSE: To determine if a walking program would lower cardiovascular risk factors for faculty and staff who adhere to a faith based values lifestyle. METHODS: Forty seven non-smoking, non-drinking faculty and staff participated in this 12 week study (31 females, 16 males; mean age= 49). Measurements taken at the beginning and end of the program included the 1 mile Rockport walking test, waist circumference, resting blood pressure, fasting blood glucose and cholesterol blood tests. Participants were required to walk for 30 minutes on at least 4 days of the week and log their exercise in a web based system. A Repeated Measures ANOVA was used to determine changes in the biometric measurements. RESULTS: While results trended toward improved biometric measurements, statistically significant improvement was only found in reduced systolic and diastolic blood pressure (p \u3e .05). The number of participants who showed improvements in systolic blood pressure was 91%, in diastolic blood pressure: 95%, in total cholesterol: 71%, in waist circumference: 80%, and in fasting blood glucose: 72%. CONCLUSION: While a 4 day a week walking program did show improvements in biometric risk factor measurements, it showed limited statistically significant changes in this group of participants. Results may be due to the faith based values lifestyle of the participants or the short length of the study

    How do GPs and patients share the responsibility for cancer safety netting follow-up actions? A qualitative interview study of GPs and patients in Oxfordshire, UK

    Get PDF
    Objective: To explore patients’ and General Practitioners' (GPs) accounts of how responsibility for follow-up was perceived and shared in their experiences of cancer safety netting occurring within the past 6 months. Design: In-depth interviews were recorded and transcribed verbatim. Data were analysed through an abductive process, exploring anticipated and emergent themes. Conceptualisations of ‘responsibility’ were explored by drawing on a transactional to interdependent continuum drawing from the shared decision-making literature. Settings and participants: A purposive sample of 25 qualified GPs and 23 adult patients in Oxfordshire, UK. Results: The transactional sharing approach involves responsibility being passed from GP to patient. Patients expected and were willing to accept responsibility in this way as long as they received clear guidance from their GP and had capacity. In interdependent sharing, GPs principally aimed to reach consensus and share responsibility with the patient by explaining their rationale, uncertainty or by stressing the potential seriousness of the situation. Patients sharing this responsibility could be put at risk if no follow-up or timeframe was suggested, they had inadequate information, were falsely reassured or their concerns were not addressed at re-consultation. Conclusion: GPs and patients exchange and share responsibility using a combination of transactional and interdependent styles, tailoring information based on patient characteristics and each party’s level of concern. Clear action plans (written where necessary) at the end of every consultation would help patients decide when to re-consult. Further research should investigate how responsibility is shared within and outside the consultation, within primary care teams and with specialist services

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    Get PDF
    Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i2 = m i2+p i2+δi,n E 2+n with delta different based on particle type i, with energy E, momentum p and rest mass m. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δi,n tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 1019 eV, we obtain δγ,0 \u3e -10-21, δγ,1 \u3e -10-40 eV-1 and δγ,2 \u3e -10-58 eV-2 in the case of a subdominant proton component up to 1020 eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δhad,0 \u3c 10-19, δhad,1 \u3c 10-38 eV-1 and δhad,2 \u3c 10-57 eV-2 at 5σ CL

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF
    The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km2 large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 1017 eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment

    Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

    Get PDF
    We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop

    Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory

    Get PDF
    The atmospheric depth of the air shower maximum Xmax is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of Xmax are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of Xmax from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of Xmax. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed Xmax using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than 25 g/cm2 at energies above 2×1019 eV

    Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory

    Get PDF
    A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 1018 eV). Despite the flux of these particles being extremely low, the area of ∼3000 km2 covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultrahigh-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km2 sr yr, and search it for anisotropies over the 3.4π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4σ significance level for cosmic-ray energies above ∼40 EeV.Fil: Abreu, P.. Instituto Superior Tecnico; Portugal. Universidade Nova de Lisboa; PortugalFil: Aglietta, M.. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Albury, J.M.. University of Adelaide; AustraliaFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Mollerach, Maria Silvia. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Almeida Cheminant, K.. Polish Academy Of Sciences; PoloniaFil: Zapparrata, O.. Université Libre de Bruxelles; BélgicaFil: Zas, E.. Universidad de Santiago de Compostela; EspañaFil: Zavrtanik, D.. University of Nova Gorica; Eslovaquia. Experimental Particle Physics Department; EslovaquiaFil: Zavrtanik, M.. University of Nova Gorica; Eslovaquia. Experimental Particle Physics Department; EslovaquiaFil: Zehrer, L.. University of Nova Gorica; Eslovaqui

    Locked down apps versus the social media ecology : why do young people and educators disagree on the best delivery platform for digital sexual health entertainment education?

    Get PDF
    This article reports on focus groups exploring the best way to reach young men with vulgar comedy videos that provide sexual health information. Young people reported that they found the means by which the material was presented - as a locked down app - to be problematic, and that it would better be delivered through social media platforms such as YouTube. This would make it more 'spreadable'. By contrast, adult sex education stakeholders thought the material should be contained within a locked down, stand-alone app - otherwise it might be seen by children who are too young, and/or young people might misunderstand the messages. We argue that the difference in approach represented by these two sets of opinions represents a fundamental stumbling block for attempts to reach young people with digital sexual health materials, which can be understood through the prism of different cultural forms - education versus entertainment

    Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

    Get PDF
    Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers
    corecore