746 research outputs found

    Technology transfer of NASA microwave remote sensing system

    Get PDF
    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported

    Multiple locus linkage analysis of genomewide expression in yeast.

    Get PDF
    With the ability to measure thousands of related phenotypes from a single biological sample, it is now feasible to genetically dissect systems-level biological phenomena. The genetics of transcriptional regulation and protein abundance are likely to be complex, meaning that genetic variation at multiple loci will influence these phenotypes. Several recent studies have investigated the role of genetic variation in transcription by applying traditional linkage analysis methods to genomewide expression data, where each gene expression level was treated as a quantitative trait and analyzed separately from one another. Here, we develop a new, computationally efficient method for simultaneously mapping multiple gene expression quantitative trait loci that directly uses all of the available data. Information shared across gene expression traits is captured in a way that makes minimal assumptions about the statistical properties of the data. The method produces easy-to-interpret measures of statistical significance for both individual loci and the overall joint significance of multiple loci selected for a given expression trait. We apply the new method to a cross between two strains of the budding yeast Saccharomyces cerevisiae, and estimate that at least 37% of all gene expression traits show two simultaneous linkages, where we have allowed for epistatic interactions. Pairs of jointly linking quantitative trait loci are identified with high confidence for 170 gene expression traits, where it is expected that both loci are true positives for at least 153 traits. In addition, we are able to show that epistatic interactions contribute to gene expression variation for at least 14% of all traits. We compare the proposed approach to an exhaustive two-dimensional scan over all pairs of loci. Surprisingly, we demonstrate that an exhaustive two-dimensional scan is less powerful than the sequential search used here. In addition, we show that a two-dimensional scan does not truly allow one to test for simultaneous linkage, and the statistical significance measured from this existing method cannot be interpreted among many traits

    Creating Communities of Learning

    Get PDF

    Using Data to Evaluate Performance and Inform Decisions

    Get PDF

    The Learning Communities Program

    Get PDF

    An Evolving Assessment Model for Learning Communities

    Get PDF

    Designing an Outcomes-Based Student Affairs Assessment Program

    Get PDF

    Adventure Education and Learning Communities: Linking Classroom Learning with Everyday Life

    Get PDF

    Integrated Academic Planning: Developing an Intentional Path Forward

    Get PDF
    This presentation will focus on successful completion of Phases 1–3 of an integrated academic planning process, with engagement of 180+ degree programs and four extraordinary education task forces. Presenters will discuss successful and provocative elements, including consensus building, community involvement, data utilization, shared governance, and transparency
    corecore