47 research outputs found

    A new low mass for the Hercules dSph: the end of a common mass scale for the dwarfs?

    Full text link
    We present a new mass estimate for the Hercules dwarf spheroidal galaxy (dSph), based on the revised velocity dispersion obtained by Aden et al. (2009, arXiv:0908.3489). The removal of a significant foreground contamination using newly acquired Stromgren photometry has resulted in a reduced velocity dispersion. Using this new velocity dispersion of 3.72 +/- 0.91 km/s, we find a mass of M_300=1.9^{+1.1}_{-0.8} 10^6 M_sun within the central 300 pc, which is also the half-light radius, and a mass of M_433=3.7_{-1.6}^{+2.2} 10^6 M_sun within the reach of our data to 433 pc, significantly lower than previous estimates. We derive an overall mass-to-light ratio of M_433/L=103^{+83}_{-48} M_sun/L_sun. Our mass estimate calls into question recent claims of a common mass scale for dSph galaxies. Additionally, we find tentative evidence for a velocity gradient in our kinematic data of 16 +/- 3 km/s/kpc, and evidence of an asymmetric extension in the light distribution at about 0.5 kpc. We explore the possibility that these features are due to tidal interactions with the Milky Way. We show that there is a self-consistent model in which Hercules has an assumed tidal radius of r_t = 485 pc, an orbital pericentre of r_p = 18.5 +/- 5 kpc, and a mass within r_t of M_{tid,r_t}=5.2 +/- 2.7 10^6 M_sun. Proper motions are required to test this model. Although we cannot exclude models in which Hercules contains no dark matter, we argue that Hercules is more likely to be a dark matter dominated system which is currently experiencing some tidal disturbance of its outer parts.Comment: 10 pages, 3 figures, Accepted for publication by ApJ

    An abundance study of red-giant-branch stars in the Hercules dwarf spheroidal galaxy

    Full text link
    Using high-resolution spectroscopy, we provide a determination of [Fe/H] and [Ca/H] for confirmed red-giant branch member stars of the Hercules dwarf spheroidal galaxy. Based on this we explore the ages of the prevailing stellar populations in Hercules, and the enrichment history from supernovae. Additionally, we provide a new simple metallicity calibration for Stromgren photometry for metal-poor, red giant branch stars. We find that the red-giant branch stars of the Hercules dSph galaxy are more metal-poor than estimated in our previous study that was based on photometry alone. Additionally, we find an abundance trend such that [Ca/Fe] is higher for more metal-poor stars, and lower for more metal-rich stars, with a spread of about 0.8 dex. The [Ca/Fe] trend suggests an early rapid chemical enrichment through supernovae of type II, followed by a phase of slow star formation dominated by enrichment through supernovae of type Ia. A comparison with isochrones indicates that the red giants in Hercules are older than 10 Gyr.Comment: 12 pages, 11 figures. Accepted for publication in A&

    External Mass Accumulation onto Core Potentials: Implications for Star Clusters, Galaxies and Galaxy Clusters

    Full text link
    Accretion studies have been focused on the flow around bodies with point mass gravitational potentials, but few general results are available for non-point mass distributions. Here, we study the accretion flow onto non-divergent, core potentials moving through a background medium. We use Plummer and Hernquist potentials as examples to study gas accretion onto star clusters, dwarf and large galaxy halos and galaxy clusters in a variety of astrophysical environments. The general conditions required for a core potential to collectively accrete large quantities of gas from the external medium are derived using both simulations and analytic results. The consequences of large mass accumulation in galaxy nuclei, dwarf galaxies and star clusters are twofold. First, if the gas cools effectively star formation can be triggered, generating new stellar members in the system. Second, if the collective potential of the system is able to alter the ambient gas properties before the gas is accreted onto the individual core members, the augmented mass supply rates could significantly alter the state of the various accreting stellar populations and result in an enhanced central black hole accretion luminosity.Comment: 24 pages, 15 figures, accepted to Ap

    Signatures of an intermediate-age metal-rich bulge population

    Get PDF
    We have determined detailed elemental abundances and stellar ages for a sample of now 38 microlensed dwarf and subgiant stars in the Galactic bulge. Stars with sub-solar metallicities are all old and have enhanced alpha-element abundances -- very similar to what is seen for local thick disk stars. The metal-rich stars on the other hand show a wide variety of stellar ages, ranging from 3-4 Gyr to 12 Gyr, and an average around 7-8 Gyr. The existence of young and metal-rich stars are in conflict with recent photometric studies of the bulge which claim that the bulge only contains old stars.Comment: Poster contribution at Galactic archeology, near-field cosmology and the formation of the Milky Way, Shuzenji, Japan, 1-4 November 2011, to be published in ASP Conference Serie

    Elemental abundances in the Galactic bulge from microlensed dwarf stars

    Full text link
    We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H=-0.8 to +0.4, and that they follow well-defined abundance trends, coincident with those of the Galactic thick disc.Comment: Poster contribution to Chemical abundances in the Universe, connecting first stars to planets, Proceedings of the International Astronomical Union, IAU Symposium, Volume 265, K. Cunha, M. Spite and B. Barbuy, eds, Cambridge University Press, in pres

    A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules

    Full text link
    Our aim is to provide as clean and as complete a sample as possible of red giant branch stars that are members of the Hercules dSph galaxy. With this sample we explore the velocity dispersion and the metallicity of the system. Stromgren photometry and multi-fibre spectroscopy are combined to provide information about the evolutionary state of the stars (via the Stromgren c_1 index) and their radial velocities. Based on this information we have selected a clean sample of red giant branch stars, and show that foreground contamination by Milky Way dwarf stars can greatly distort the results. Our final sample consists of 28 red giant branch stars in the Hercules dSph galaxy. Based on these stars we find a mean photometric metallicity of -2.35 dex which is consistent with previous studies. We find evidence for an abundance spread. Using those stars for which we have determined radial velocities we find a systemic velocity of 45.2 km/s with a dispersion of 3.72 km/s, this is lower than values found in the literature. Furthermore we identify the horizontal branch and estimate the mean magnitude of the horizontal branch of the Hercules dSph galaxy to be V_0=21.17, which corresponds to a distance of 147 kpc. We have shown that a proper cleaning of the sample results in a smaller value for the velocity dispersion of the system. This has implications for galaxy properties derived from such velocity dispersions.Comment: 24 pages, 28 figure

    Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    Get PDF
    The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars. [ABRIDGED] We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. [ABRIDGED] We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H]=-0.72 to +0.54, and an average metallicity of =-0.08+/-0.47, close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H]<0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.Comment: New version accepted for publication in Astronomy and Astrophysic

    Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    Get PDF
    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star of a new microlensing event towards the Bulge, for which we obtained a high-resolution spectrum with the MIKE spectrograph on the Magellan Clay telescope. We have performed four different analyses of OGLE-2008-BLG-209S. [ABRIDGED] We have also re-analysed three previous microlensed dwarf stars OGLE-2006-BLG-265S, MOA-2006-BLG-099S, and OGLE-2007-BLG-349S with the same method. This homogeneous data set, although small, enables a direct comparison between the different stellar populations. RESULTS. We find that OGLE-2008-BLG-209S is a subgiant star that has a metallicity of [Fe/H] ~-0.33. It possesses [alpha/Fe] enhancements similar to what is found for Bulge giant stars at the same metallicity, and what also is found for nearby thick disc stars at the same metallicity. In contrast, the previous three microlensing dwarf stars have very high metallicities, [Fe/H]>+0.4, and more solar-like abundance ratios, i.e. [alpha/Fe]~0. The decrease in the [alpha/Fe] ratio with [Fe/H] is the typical signature of enrichment from low and intermediate mass stars. We furthermore find that the results for the four Bulge stars, in combination with results from studies of giant stars in the Bulge, seem to favour a secular formation scenario for the Bulge.Comment: Accepted for publication in A&A, 17 pages, online table will be available in published version, or by contacting the first autho

    Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation

    Full text link
    (abridged) Predictions of the Concordance Cosmological Model (CCM) of the structures in the environment of large spiral galaxies are compared with observed properties of Local Group galaxies. Five new most probably irreconcilable problems are uncovered. However, the Local Group properties provide hints that may lead to a solution of the above problems The DoS and bulge--satellite correlation suggest that dissipational events forming bulges are related to the processes forming phase-space correlated satellite populations. Such events are well known to occur since in galaxy encounters energy and angular momentum are expelled in the form of tidal tails, which can fragment to form populations of tidal-dwarf galaxies (TDGs) and associated star clusters. If Local Group satellite galaxies are to be interpreted as TDGs then the sub-structure predictions of CCM are internally in conflict. All findings thus suggest that the CCM does not account for the Local Group observations and that therefore existing as well as new viable alternatives have to be further explored. These are discussed and natural solutions for the above problems emerge.Comment: A and A, in press, 25 pages, 9 figures; new version contains minor text adjustments for conformity with the published version and additional minor changes resulting from reader's feedback. The speculation on a dark force has been added. Also, the Fritz Zwicky Paradox is now included to agree with the published versio
    corecore