344 research outputs found

    Biochar effects on methane emissions from soils: a meta-analysis

    Get PDF
    Methane (CH4) emissions have increased by more than 150% since 1750, with agriculture being the major source. Further increases are predicted as permafrost regions start thawing, and rice and ruminant animal production expand. Biochar is posited to increase crop productivity while mitigating climate change by sequestering carbon in soils and by influencing greenhouse gas fluxes. There is a growing understanding of biochar effects on carbon dioxide and nitrous oxide fluxes from soil. However, little is known regarding the effects on net methane exchange, with single studies often reporting contradictory results. Here we aim to reconcile the disparate effects of biochar application to soil in agricultural systems on CH4 fluxes into a single interpretive framework by quantitative meta-analysis. This study shows that biochar has the potential to mitigate CH4 emissions from soils, particularly from flooded (i.e. paddy) fields (Hedge's d = −0.87) and/or acidic soils (Hedge's d = −1.56) where periods of flooding are part of the management regime. Conversely, addition of biochar to soils that do not have periods of flooding (Hedge's d = 0.65), in particular when neutral or alkaline (Hedge's d = 1.17 and 0.44, respectively), may have the potential to decrease the CH4 sink strength of those soils. Global methane fluxes are net positive as rice cultivation is a much larger source of CH4 than the sink contribution of upland soils. Therefore, this meta-study reveals that biochar use may have the potential to reduce atmospheric CH4 emissions from agricultural flooded soils on a global scale

    Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland

    Get PDF
    Agricultural soils are a major source of nitric oxide (NO) and nitrous oxide (N2O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. While N2O emissions have been attributed to both processes, depending on the environmental conditions such as substrate availability, pH and water filled pore space (WFPS), NO emissions are thought to predominantly derive from nitrification. Although attributing gaseous emissions to specific processes is still difficult, recent findings challenge the latter of those assumptions. Using the gas-flow-soil-core method, i.e soil cores incubated under a He/O2 atmosphere at constant surface gas flow, combined with 15N labelled isotopic techniques, the present study investigated the role of denitrification on NO, N2O and N2 emissions in a UK grassland soil under high soil moisture and an aerobic headspace atmosphere. With the application of KNO3 and glucose to support denitrification, denitrification was the source of N loss of between 0.61 and 0.67% of the added N via NO emissions, 1.60–1.68% via N2O and 0.03–0.05% via N2 emissions. Overall, our study showed that denitrification has been overlooked as a source of NO emissions

    Is children’s education associated with parental health? Evidence from the Philippines

    Get PDF
    This study examines the association between children’s education and parental health using data from the 2007 Philippine Study on Ageing. It employs a broad, more comprehensive, definition of health to capture the different health dimensions. By employing multiple indicators of health, this study is able to examine whether the influence of children's education is consistent across different health indicators. It also investigates whether parental behavior and receipt of support from children serve as pathways that mediate the relationship between children’s education and parental health. Findings show that older women whose children completed tertiary education have lower odds of reporting IADL or ADL difficulty compared with their counterparts whose children attained below tertiary education. These findings contribute to the growing evidence that education is not only an individual resource; rather it could be a household or family resource that could benefit other family members

    Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems

    Get PDF
    This is the final version. Available from IOP Publishing via the DOI in this record. Data availability statement: The data that support the findings of this study are openly available at the following URL/DOI: https:// doi.org/10.17605/osf.io/2fjhw.Code availability statement: The code to reproduce the findings of this study is openly available at the following URL/DOI: https://doi.org/10.17605/osf.io/2fjhw. The synthesized data after curation is provided (Supplementary data).Nitrous oxide (N2O) emissions from agricultural soils are the main source of atmospheric N2O, a potent greenhouse gas and key ozone-depleting substance. Several agricultural practices with potential to mitigate N2O emissions have been tested worldwide. However, to guide policymaking for reducing N2O emissions from agricultural soils, it is necessary to better understand the overall performance and variability of mitigation practices and identify those requiring further investigation. We performed a systematic review and a second-order meta-analysis to assess the abatement efficiency of N2O mitigation practices from agricultural soils. We used 27 meta-analyses including 41 effect sizes based on 1119 primary studies. Technology-driven solutions (e.g. enhanced-efficiency fertilizers, drip irrigation, and biochar) and optimization of fertilizer rate have considerable mitigation potential. Agroecological mitigation practices (e.g. organic fertilizer and reduced tillage), while potentially contributing to soil quality and carbon storage, may enhance N2O emissions and only lead to reductions under certain pedoclimatic and farming conditions. Other mitigation practices (e.g. lime amendment or crop residue removal) led to marginal N2O decreases. Despite the variable mitigation potential, evidencing the context-dependency of N2O reductions and tradeoffs, several mitigation practices may maintain or increase crop production, representing relevant alternatives for policymaking to reduce greenhouse gas emissions and safeguard food security.Danish Council for Independent ResearchDanish Council for Independent ResearchEU H2020 Marie Skłodowska-Curie Action

    Biochar boosts tropical but not temperate crop yields

    Get PDF
    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services

    A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues

    Get PDF
    Crop residues are of crucial importance to maintain or even increase soil carbon stocks and fertility, and thereby to address the global challenge of climate change mitigation. However, crop residues can also potentially stimulate emissions of the greenhouse gas nitrous oxide (N2_{2}O) from soils. A better understanding of how to mitigate N2_{2}O emissions due to crop residue management while promoting positive effects on soil carbon is needed to reconcile the opposing effects of crop residues on the greenhouse gas balance of agroecosystems. Here, we combine a literature review and a meta-analysis to identify and assess measures for mitigating N2_{2}O emissions due to crop residue application to agricultural fields. Our study shows that crop residue removal, shallow incorporation, incorporation of residues with C:N ratio > 30 and avoiding incorporation of residues from crops terminated at an immature physiological stage, are measures leading to significantly lower N2_{2}O emissions. Other practices such as incorporation timing and interactions with fertilisers are less conclusive. Several of the evaluated N2_{2}O mitigation measures implied negative side-effects on yield, soil organic carbon storage, nitrate leaching and/or ammonia volatilization. We identified additional strategies with potential to reduce crop residue N2_{2}O emissions without strong negative side-effects, which require further research. These are: a) treatment of crop residues before field application, e.g., conversion of residues into biochar or anaerobic digestate, b) co-application with nitrification inhibitors or N-immobilizing materials such as compost with a high C:N ratio, paper waste or sawdust, and c) use of residues obtained from crop mixtures. Our study provides a scientific basis to be developed over the coming years on how to increase the sustainability of agroecosystems though adequate crop residue management

    Towards optimal use of phosphorus fertiliser

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The dataset analysed during the current study is available from the corresponding author on reasonable request.Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40–100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5–6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.De Heus b.v

    The global diabatic circulation of the stratosphere as a metric for the Brewer–Dobson circulation

    Get PDF
    The circulation of the stratosphere, also known as the Brewer–Dobson circulation, transports water vapor and ozone, with implications for radiative forcing and climate. This circulation is typically quantified from model output by calculating the tropical upwelling vertical velocity in the residual circulation framework, and it is estimated from observations by using time series of tropical water vapor to infer a vertical velocity. Recent theory has introduced a method to calculate the strength of the global mean diabatic circulation through isentropes from satellite measurements of long-lived tracers. In this paper, we explore this global diabatic circulation as it relates to the residual circulation vertical velocity, stratospheric water vapor, and ozone at interannual timescales. We use a comprehensive climate model, three reanalysis data products, and satellite ozone data. The different metrics for the circulation have different properties, especially with regards to the vertical autocorrelation. In the model, the different residual circulation metrics agree closely and are well correlated with the global diabatic circulation, except in the lowermost stratosphere. In the reanalysis products, however, there are more differences throughout, indicating the dynamical inconsistencies of these products. The vertical velocity derived from the time series of water vapor in the tropics is significantly correlated with the global diabatic circulation, but this relationship is not as strong as that between the global diabatic circulation and the residual circulation vertical velocity. We find that the global diabatic circulation in the lower to middle stratosphere (up to 500 K) is correlated with the total column ozone in the high latitudes and in the tropics. The upper-level circulation is also correlated with the total column ozone, primarily in the subtropics, and we show that this is due to the correlation of both the circulation and the ozone with upper-level temperatures

    Enter Her Novice World: A Narrative Study on The Life of a Teenage Student–Mother

    Get PDF
    This study unraveled the challenges of a teenage mother while studying as a senior high school student amidst the tremors of the pandemic. In doing so, a qualitative narrative research design was used in gathering the data, and an unstructured interview was done with the main participant. The listed responses were scrutinized to formulate a general conclusion regarding the overall condition of the teenage mother. Based on the findings, it was revealed that the teenage student-mother is prone to conflicts, and to combat these conflicts, perseverance along with hard work is a must. For the most part, it has been established that the amount of support received by the teenage student-mother is one of the major reasons that contribute to their overall state because in every aspect of life they are involved in, their children will always be a part of them because they are the utmost priority of these teenage student-mothers. In general, the researchers concluded that in the participant’s time in distance learning, her parenting was not affected that much by her school work. With this being said, her positive attitude towards her grueling circumstance led to her overall success in both her motherly and academic duties. She was able to continue her studies and take care of her child all at once because of the new learning environment brought out by distance learning

    Predicting field N2_{2}O emissions from crop residues based on their biochemical composition: A meta-analytical approach

    Get PDF
    Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (N2_{2}O). Previous meta-analyses have linked various biochemical properties of crop residues to N2_{2}O emissions, but the relationships between these properties have been overlooked, hampering our ability to predict N2_{2}O emissions from specific residues. Here we combine comprehensive databases for N2_{2}O emissions from crop residues and crop residue biochemical characteristics with a random-meta-forest approach, to develop a predictive framework of crop residue effects on N2_{2}O emissions. On average, crop residue incorporation increased soil N2_{2}O emissions by 43% compared to residue removal, however crop residues led to both increases and reductions in N2_{2}O emissions. Crop residue effects on N2_{2}O emissions were best predicted by easily degradable fractions (i.e. water soluble carbon, soluble Van Soest fraction (NDS)), structural fractions and N returned with crop residues. The relationship between these biochemical properties and N2_{2}O emissions differed widely in terms of form and direction. However, due to the strong correlations among these properties, we were able to develop a simplified classification for crop residues based on the stage of physiological maturity of the plant at which the residue was generated. This maturity criteria provided the most robust and yet simple approach to categorize crop residues according to their potential to regulate N2_{2}O emissions. Immature residues (high water soluble carbon, soluble NDS and total N concentration, low relative cellulose, hemicellulose, lignin fractions, and low C:N ratio) strongly stimulated N2_{2}O emissions, whereas mature residues with opposite characteristics had marginal effects on N2_{2}O. The most important crop types belonging to the immature residue group – cover crops, grasslands and vegetables – are important for the delivery of multiple ecosystem services. Thus, these residues should be managed properly to avoid their potentially high N2_{2}O emissions
    • …
    corecore