2,456 research outputs found

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila

    Rate Measurement of D0K+ππ0D^{0}\to K^{+}\pi^{-}\pi^{0} and Constraints on D0D0D^{0} - \overline{D^{0}} Mixing

    Full text link
    We present an observation and rate measurement of the decay D0 -> K+pi-pi0 produced in 9/fb of e+e- collisions near the Upsilon(4S) resonance. The signal is inconsistent with an upward fluctuation of the background by 4.9 standard deviations. We measured the rate of D0 -> K+pi-pi0 normalized to the rate of D0bar -> K+pi-pi0 to be 0.0043 +0.0011 -0.0010 (stat) +/- 0.0007 (syst). This decay can be produced by doubly-Cabibbo-suppressed decays or by the D0 evolving into a D0bar through mixing, followed by a Cabibbo-favored decay to K+pi-pi0. We also found the CP asymmetry A=(8 +25 -22)% to be consistent with zero.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Branching Fractions of tau Leptons to Three Charged Hadrons

    Full text link
    From electron-positron collision data collected with the CLEO detector operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the branching fractions for tau decays into three explicitly identified hadrons and a neutrino are presented as {\cal B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are statistical and systematic, respectively.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let

    First Measurement of Gamma(D*+) and Precision Measurement of m_D*+ - m_D0

    Full text link
    We present the first measurement of the D*+ width using 9/fb of e+ e- data collected near the Upsilon(4S) resonance by the CLEO II.V detector. Our method uses advanced tracking techniques and a reconstruction method that takes advantage of the small vertical size of the CESR beam spot to measure the energy release distribution from the D*+ -> D0 pi+ decay. We find Gamma(D*+) = 96 +- 4 (Statistical) +- 22 (Systematic) keV. We also measure the energy release in the decay and compute Delta m = m(D*+) - m(D0) = 145.412 +- 0.002 (Statistical) +- 0.012 (Systematic) MeV/c^2Comment: 24 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e

    Full text link
    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+ nu_e. By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat) +/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/ (alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR
    corecore