35 research outputs found

    The Frequency Dependent Conductivity of Electron Glasses

    Full text link
    Results of DC and frequency dependent conductivity in the quantum limit, i.e. hw > kT, for a broad range of dopant concentrations in nominally uncompensated, crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are reported. These materials fall under the general category of disordered insulating systems, which are referred to as electron glasses. Using microwave resonant cavities and quasi-optical millimeter wave spectroscopy we are able to study the frequency dependent response on the insulating side of the metal-insulator transition. We identify a quantum critical regime, a Fermi glass regime and a Coulomb glass regime. Our phenomenological results lead to a phase diagram description, or taxonomy, of the electrodynamic response of electron glass systems

    Dielectric properties and dynamical conductivity of LaTiO3: From dc to optical frequencies

    Full text link
    We provide a complete and detailed characterization of the temperature-dependent response to ac electrical fields of LaTiO3, a Mott-Hubbard insulator close to the metal-insulator transition. We present combined dc, broadband dielectric, mm-wave, and infrared spectra of ac conductivity and dielectric constant, covering an overall frequency range of 17 decades. The dc and dielectric measurements reveal information on the semiconducting charge-transport properties of LaTiO3, indicating the importance of Anderson localization, and on the dielectric response due to ionic polarization. In the infrared region, the temperature dependence of the phonon modes gives strong hints for a structural phase transition at the magnetic ordering temperature. In addition, a gap-like electronic excitation following the phonon region is analyzed in detail. We compare the results to the soft-edge behavior of the optical spectra characteristic for Mott-Hubbard insulators. Overall a consistent picture of the charge-transport mechanisms in LaTiO3 emerges.Comment: 11 pages, 8 figures, 1 tabl
    corecore