15,568 research outputs found
Do Reindeer (Rangifer tarandus tarandus) (M. longissimus dorsi) Prefer Disturbed or Undisturbed Lichen Mats?
Persistence of Regional Unemployment: Application of a Spatial Filtering Approach to Local Labour Markets in Germany
The geographical distribution and persistence of regional/local unemployment rates in heterogeneous economies (such as Germany) have been, in recent years, the subject of various theoretical and empirical studies. Several researchers have shown an interest in analysing the dynamic adjustment processes of unemployment and the average degree of dependence of the current unemployment rates or gross domestic product from the ones observed in the past. In this paper, we present a new econometric approach to the study of regional unemployment persistence, in order to account for spatial heterogeneity and/or spatial autocorrelation in both the levels and the dynamics of unemployment. First, we propose an econometric procedure suggesting the use of spatial filtering techniques as a substitute for fixed effects in a panel estimation framework. The spatial filter computed here is a proxy for spatially distributed region-specific information (e.g., the endowment of natural resources, or the size of the ‘home market’) that is usually incorporated in the fixed effects parameters. The advantages of our proposed procedure are that the spatial filter, by incorporating region-specific information that generates spatial autocorrelation, frees up degrees of freedom, simultaneously corrects for time-stable spatial autocorrelation in the residuals, and provides insights about the spatial patterns in regional adjustment processes. We present several experiments in order to investigate the spatial pattern of the heterogeneous autoregressive parameters estimated for unemployment data for German NUTS-3 regions. We find widely heterogeneous but generally high persistence in regional unemployment rates.
Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models
We examine the local nature of the dynamic stress field in the vicinity of the tip of a semi-infinite sub-Rayleigh (slower than the Rayleigh wave speed, c_R) mode II crack with a velocity-weakening cohesive zone. We constrain the model using results from dynamic photoelastic experiments, in which shear ruptures were nucleated spontaneously in Homalite-100 plates along a bonded, precut, and inclined interface subject to a far-field uniaxial prestress. During the experiments, tensile cracks grew periodically along one side of the shear rupture interface at a roughly constant angle relative to the shear rupture interface. The occurrence and inclination of the tensile cracks are explained by our analytical model. With slight modifications, the model can be scaled to natural faults, providing diagnostic criteria for interpreting velocity, directivity, and static prestress state associated with past earthquakes on exhumed faults. Indirectly, this method also allows one to constrain the velocity-weakening nature of natural ruptures, providing an important link between field geology, laboratory experiments, and seismology
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
Electric dipole moments (edms) of bound states that arise from the
constituents having edms are studied with field-theoretic techniques. The
systems treated are the neutron and a set of paramagnetic atoms. In the latter
case it is well known that the atomic edm differs greatly from the electron edm
when the internal electric fields of the atom are taken into account. In the
nonrelativistic limit these fields lead to a complete suppression, but for
heavy atoms large enhancement factors are present. A general bound-state field
theory approach applicable to both the neutron and paramagnetic atoms is set
up. It is applied first to the neutron, treating the quarks as moving freely in
a confining spherical well. It is shown that the effect of internal electric
fields is small in this case. The atomic problem is then revisited using
field-theory techniques in place of the usual Hamiltonian methods, and the
atomic enhancement factor is shown to be consistent with previous calculations.
Possible application of bound-state techniques to other sources of the neutron
edm is discussed.Comment: 21 pages, 5 figure
Linear Chains of Styrene and Methyl-Styrene Molecules and their Heterojunctions on Silicon: Theory and Experiment
We report on the synthesis, STM imaging and theoretical studies of the
structure, electronic structure and transport properties of linear chains of
styrene and methyl-styrene molecules and their heterojunctions on
hydrogen-terminated dimerized silicon (001) surfaces. The theory presented here
accounts for the essential features of the experimental STM data including the
nature of the corrugation observed along the molecular chains and the
pronounced changes in the contrast between the styrene and methyl-styrene parts
of the molecular chains that are observed as the applied bias is varied. The
observed evolution with applied bias of the STM profiles near the ends of the
molecular chains is also explained. Calculations are also presented of electron
transport along styrene linear chains adsorbed on the silicon surface at
energies in the vicinity of the molecular HOMO and LUMO levels. For short
styrene chains this lateral transport is found to be due primarily to direct
electron transmission from molecule to molecule rather than through the silicon
substrate, especially in the molecular LUMO band. Differences between the
calculated position-dependences of the STM current around a junction of styrene
and methyl-styrene molecular chains under positive and negative tip bias are
related to the nature of lateral electron transmission along the molecular
chains and to the formation in the LUMO band of an electronic state localized
around the heterojunction.Comment: 17 pages plus 11 figures. To appear in Physical Review
EPR studies of manganese centers in SrTiO3: Non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers
X- and Q-band electron paramagnetic resonance (EPR) study is reported on the
SrTiO3 single crystals doped with 0.5-at.% MnO. EPR spectra originating from
the S = 2 ground state of Mn3+ ions are shown to belong to the three distinct
types of Jahn-Teller centres. The ordering of the oxygen vacancies due to the
reduction treatment of the samples and consequent formation of oxygen vacancy
associated Mn3+ centres are explained in terms of the localized charge
compensation. The EPR spectra of SrTiO3: Mn crystals show the presence of next
nearest neighbor exchange coupled Mn4+ pairs in the directions.Comment: 17 pages, 8 figure
Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry
We present a comprehensive ellipsometric study of an untwinned, nearly
stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures
20 K < T < 300 K. The complex dielectric response along the b and c axes of the
Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly
anisotropic over the spectral range covered in the experiment. The difference
between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing
temperature, and the gradual evolution observed in the paramagnetic state is
strongly enhanced by the onset of A-type antiferromagnetic long-range order at
T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap
excitation at 2 eV, there are opposite changes observed at higher energy at 4 -
5 eV, appearing on a broad-band background due to the strongly dipole-allowed O
2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the
observation of a pronounced spectral-weight transfer between low- and
high-energy features upon magnetic ordering, they are assigned to high-spin and
low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy
of the lowest-energy optical band and the spectral weight shifts induced by
antiferromagnetic spin correlations are quantitatively described by an
effective spin-orbital superexchange model. An analysis of the multiplet
structure of the intersite transitions by Mn e_g electrons allowed us to
estimate the effective intra-atomic Coulomb interaction, the Hund exchange
coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3.
This study identifies the lowest-energy optical transition at 2 eV as an
intersite d-d transition, whose energy is substantially reduced compared to
that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure
A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion
Key Points
Novel RARG-CPSF6 fusion in an AML case with promyelocytic features and no evidence of PML-RARA or X-RARA fusion. Gene fusions involving RARG can initiate AML with promyelocytic morphological features.</jats:p
Spectroscopy on two coupled flux qubits
We have performed spectroscopy measurements on two coupled flux qubits. The
qubits are coupled inductively, which results in a
interaction. By applying microwave radiation, we observe resonances due to
transitions from the ground state to the first two excited states. From the
position of these resonances as a function of the magnetic field applied we
observe the coupling of the qubits. The coupling strength agrees well with
calculations of the mutual inductance
Collective leadership behaviors : evaluating the leader, team network, and problem situation characteristics that influence their use
The focus on non-hierarchical, collectivistic, leadership has been steadily increasing with several different theories emerging (Yammarino, Salas, Serban, Shirreffs, & Shuffler, 2012). While most take the view that collectivistic approaches to leadership (e.g., shared and distributed leadership) are emergent properties of the team, a recent, integrative framework by Friedrich, Vessey, Schuelke, Ruark and Mumford (2009) proposed that collective leadership, defined as the selective utilization of expertise within the network, does not eliminate the role of the focal leader. In the present study, three dimensions of collective leadership behaviors from the Friedrich et al. (2009) framework — Communication, Network Development, and Leader–Team Exchange were tested with regard to how individual differences of leaders (intelligence, experience, and personality), the team's network (size, interconnectedness, and embeddedness), the given problem domain (strategic change or innovation), and problem focus (task or relationship focused) influenced the use of each collective leadership dimension
- …
