61,038 research outputs found
Energetics of the Quantum Graphity Universe
Quantum graphity is a background independent model for emergent geometry, in
which space is represented as a complete graph. The high-energy pre-geometric
starting point of the model is usually considered to be the complete graph,
however we also consider the empty graph as a candidate pre-geometric state.
The energetics as the graph evolves from either of these high-energy states to
a low-energy geometric state is investigated as a function of the number of
edges in the graph. Analytic results for the slope of this energy curve in the
high-energy domain are derived, and the energy curve is plotted exactly for
small number of vertices . To study the whole energy curve for larger (but
still finite) , an epitaxial approximation is used. It is hoped that this
work may open the way for future work to compare predictions from quantum
graphity with observations of the early universe, making the model falsifiable.Comment: 8 pages, 3 figure
Dual pathway spindle assembly increases both the speed and the fidelity of mitosis
Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis
Generating the Baryon Asymmetry of the Universe in Split Fermion Models
The origin of the matter-antimatter asymmetry of the universe is one of the
major unsolved problems in cosmology and particle physics. In this paper, we
investigate the recently proposed possibility that split fermion models --
extra dimensional models where the standard model fermions are localized to
different points around the extra dimension -- could provide a means to
generate this asymmetry during the phase transition of the localizing scalars.
After setting up the scenario that we consider, we use a single fermion toy
model to estimate the reflection coefficients for scattering off the phase
boundary using a more realistic scalar profile than previous work resulting in
a different Kaluza Klein spectrum. The value we calculate for is
consistent with the mechanism being the source of the baryon asymmetry of our
universe provided the violating processes have an efficiency of order
.Comment: 17 pages, 3 figures; References added; Minor changes, Accepted for
publication in Phys. Rev.
Charge shelving and bias spectroscopy for the readout of a charge-qubit on the basis of superposition states
Charge-based qubits have been proposed as fundamental elements for quantum
computers. One commonly proposed readout device is the single-electron
transistor (SET). SETs can distinguish between localized charge states, but
lack the sensitivity to directly distinguish superposition states, which have
greatly enhanced coherence times compared with position states. We propose
introducing a third dot, and exploiting energy dependent tunnelling from the
qubit into this dot (bias spectroscopy) for pseudo-spin to charge conversion
and superposition basis readout. We introduce an adiabatic fast passage-style
charge pumping technique which enables efficient and robust readout via charge
shelving, avoiding problems due to finite SET measurement time.Comment: 4 pages, 3 figures, note slightly changed title, replaced with
journal versio
- …