61,038 research outputs found

    Energetics of the Quantum Graphity Universe

    Get PDF
    Quantum graphity is a background independent model for emergent geometry, in which space is represented as a complete graph. The high-energy pre-geometric starting point of the model is usually considered to be the complete graph, however we also consider the empty graph as a candidate pre-geometric state. The energetics as the graph evolves from either of these high-energy states to a low-energy geometric state is investigated as a function of the number of edges in the graph. Analytic results for the slope of this energy curve in the high-energy domain are derived, and the energy curve is plotted exactly for small number of vertices NN. To study the whole energy curve for larger (but still finite) NN, an epitaxial approximation is used. It is hoped that this work may open the way for future work to compare predictions from quantum graphity with observations of the early universe, making the model falsifiable.Comment: 8 pages, 3 figure

    Dual pathway spindle assembly increases both the speed and the fidelity of mitosis

    Get PDF
    Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis

    Generating the Baryon Asymmetry of the Universe in Split Fermion Models

    Full text link
    The origin of the matter-antimatter asymmetry of the universe is one of the major unsolved problems in cosmology and particle physics. In this paper, we investigate the recently proposed possibility that split fermion models -- extra dimensional models where the standard model fermions are localized to different points around the extra dimension -- could provide a means to generate this asymmetry during the phase transition of the localizing scalars. After setting up the scenario that we consider, we use a single fermion toy model to estimate the reflection coefficients for scattering off the phase boundary using a more realistic scalar profile than previous work resulting in a different Kaluza Klein spectrum. The value we calculate for nB/sn_B/s is consistent with the mechanism being the source of the baryon asymmetry of our universe provided the B−LB-L violating processes have an efficiency of order 10−510^{-5}.Comment: 17 pages, 3 figures; References added; Minor changes, Accepted for publication in Phys. Rev.

    Charge shelving and bias spectroscopy for the readout of a charge-qubit on the basis of superposition states

    Full text link
    Charge-based qubits have been proposed as fundamental elements for quantum computers. One commonly proposed readout device is the single-electron transistor (SET). SETs can distinguish between localized charge states, but lack the sensitivity to directly distinguish superposition states, which have greatly enhanced coherence times compared with position states. We propose introducing a third dot, and exploiting energy dependent tunnelling from the qubit into this dot (bias spectroscopy) for pseudo-spin to charge conversion and superposition basis readout. We introduce an adiabatic fast passage-style charge pumping technique which enables efficient and robust readout via charge shelving, avoiding problems due to finite SET measurement time.Comment: 4 pages, 3 figures, note slightly changed title, replaced with journal versio
    • …
    corecore