3,148 research outputs found

    Decoherence and entropy of primordial fluctuations. I: Formalism and interpretation

    Full text link
    We propose an operational definition of the entropy of cosmological perturbations based on a truncation of the hierarchy of Green functions. The value of the entropy is unambiguous despite gauge invariance and the renormalization procedure. At the first level of truncation, the reduced density matrices are Gaussian and the entropy is the only intrinsic quantity. In this case, the quantum-to-classical transition concerns the entanglement of modes of opposite wave-vectors, and the threshold of classicality is that of separability. The relations to other criteria of classicality are established. We explain why, during inflation, most of these criteria are not intrinsic. We complete our analysis by showing that all reduced density matrices can be written as statistical mixtures of minimal states, the squeezed properties of which are less constrained as the entropy increases. Pointer states therefore appear not to be relevant to the discussion. The entropy is calculated for various models in paper II.Comment: 23 page

    Disc formation in turbulent cloud cores: Circumventing the magnetic braking catastrophe

    Full text link
    We present collapse simulations of strongly magnetised, 100 M_sun, turbulent cloud cores. Around the protostars formed during the collapse Keplerian discs with typical sizes of up to 100 AU build up in contrast to previous simulations neglecting turbulence. Analysing the condensations in which the discs form, we show that the magnetic flux loss is not sufficient to explain the build-up of Keplerian discs. The average magnetic field is strongly inclined to the disc which might reduce the magnetic braking efficiency. However, the main reason for the reduced magnetic braking efficiency is the highly disordered magnetic field in the surroundings of the discs. Furthermore, due to the lack of a coherently rotating structure in the turbulent environment of the disc no toroidal magnetic field necessary for angular momentum extraction can build up. Simultaneously the angular momentum inflow remains high due to local shear flows created by the turbulent motions. We suggest that the "magnetic braking catastrophe" is an artefact of the idealised non-turbulent initial conditions and that turbulence provides a natural mechanism to circumvent this problem.Comment: 4 pages, 2 figures. To appear in the proceedings of 'The Labyrinth of Star Formation' (18-22 June 2012, Chania, Greece), published by Springe

    Decoherence and entropy of primordial fluctuations II. The entropy budget

    Full text link
    We calculate the entropy of adiabatic perturbations associated with a truncation of the hierarchy of Green functions at the first non trivial level, i.e. in a self-consistent Gaussian approximation. We give the equation governing the entropy growth and discuss its phenomenology. It is parameterized by two model-dependent kernels. We then examine two particular inflationary models, one with isocurvature perturbations, the other with corrections due to loops of matter fields. In the first model the entropy grows rapidely, while in the second the state remains pure (at one loop).Comment: 28 page

    Creation of Entanglement by Interaction with a Common Heat Bath

    Full text link
    I show that entanglement between two qubits can be generated if the two qubits interact with a common heat bath in thermal equilibrium, but do not interact directly with each other. In most situations the entanglement is created for a very short time after the interaction with the heat bath is switched on, but depending on system, coupling, and heat bath, the entanglement may persist for arbitrarily long times. This mechanism sheds new light on the creation of entanglement. A particular example of two quantum dots in a closed cavity is discussed, where the heat bath is given by the blackbody radiation.Comment: 4 revtex pages, 1 eps figure; replaced with published version; short discussion on entanglement distillation adde

    Decoherence: Concepts and Examples

    Get PDF
    We give a pedagogical introduction to the process of decoherence - the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in the Proceedings of the 10th Born Symposiu

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    Full text link
    We discuss the scattering equivalence of the generalized Bakamjian-Thomas construction of dynamical representations of the Poincar\'e group in all of Dirac's forms of dynamics. The equivalence was established by Sokolov in the context of proving that the equivalence holds for models that satisfy cluster separability. The generalized Bakamjian Thomas construction is used in most applications, even though it only satisfies cluster properties for systems of less than four particles. Different forms of dynamics are related by unitary transformations that remove interactions from some infinitesimal generators and introduce them to other generators. These unitary transformation must be interaction dependent, because they can be applied to a non-interacting generator and produce an interacting generator. This suggests that these transformations can generate complex many-body forces when used in many-body problems. It turns out that this is not the case. In all cases of interest the result of applying the unitary scattering equivalence results in representations that have simple relations, even though the unitary transformations are dynamical. This applies to many-body models as well as models with particle production. In all cases no new many-body operators are generated by the unitary scattering equivalences relating the different forms of dynamics. This makes it clear that the various calculations used in applications that emphasize one form of the dynamics over another are equivalent. Furthermore, explicit representations of the equivalent dynamical models in any form of dynamics are easily constructed. Where differences do appear is when electromagnetic probes are treated in the one-photon exchange approximation. This approximation is different in each of Dirac's forms of dynamics.Comment: 6 pages, no figure

    Decoherence in QED at finite temperature

    Full text link
    We consider a wave packet of a charged particle passing through a cavity filled with photons at temperature T and investigate its localization and interference properties. It is shown that the wave packet becomes localized and the interference disappears with an exponential speed after a sufficiently long path through the cavity.Comment: Latex, 10 page
    corecore