14 research outputs found

    Red or green : Overprinting of the climatic signal in Miocene sediments, South China Sea (IODP Expedition 368, Site U1502)

    Get PDF
    Funding Information: Support was provided by Chinese 111 (HW), ECORD (SS), Korean IODP (DC), National Science Foundation (ECF), Natural Environment Research Council (SAB) and U.S. Science Support Program, Lamont‐Doherty Earth Observatory (ECF, PP). Marco Maffione, an anonymous reviewer, the Associate Editor and Max Coleman are kindly acknowledged. Publisher Copyright: © 2023 The Authors. Terra Nova published by John Wiley & Sons Ltd.Peer reviewedPublisher PD

    Fast recovery of compressed multi-contrast magnetic resonance images

    No full text
    In many settings, multiple Magnetic Resonance Imaging (MRI) scans are performed with different contrast characteristics at a single patient visit. Unfortunately, MRI data-acquisition is inherently slow creating a persistent need to accelerate scans. Multi-contrast reconstruction deals with the joint reconstruction of different contrasts simultaneously. Previous approaches suggest solving a regularized optimization problem using group sparsity and/or color total variation, using composite-splitting denoising and FISTA. Yet, there is significant room for improvement in existing methods regarding computation time, ease of parameter selection, and robustness in reconstructed image quality. Selection of sparsifying transformations is critical in applications of compressed sensing. Here we propose using non-convex p-norm group sparsity (with p < 1), and apply color total variation (CTV). Our method is readily applicable to magnitude images rather than each of the real and imaginary parts separately. We use the constrained form of the problem, which allows an easier choice of data-fidelity error-bound (based on noise power determined from a noise-only scan without any RF excitation). We solve the problem using an adaptation of Alternating Direction Method of Multipliers (ADMM), which provides faster convergence in terms of CPU-time. We demonstrated the effectiveness of the method on two MR image sets (numerical brain phantom images and SRI24 atlas data) in terms of CPU-time and image quality. We show that a non-convex group sparsity function that uses the p-norm instead of the convex counterpart accelerates convergence and improves the peak-Signal-to-Noise-Ratio (pSNR), especially for highly undersampled data. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively

    No full text
    Introduction: The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field.Methods: In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging.Results: The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV.Conclusion: In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications

    Magnetic resonance fingerprinting

    No full text
    Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches
    corecore