56 research outputs found
Real and Virtual Compton Scattering: the nucleon polarisabilities
We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma
p) with a real or virtual incoming photon. These processes allow the
investigation of one of the fundamental properties of the nucleon, i.e. how its
internal structure deforms under an applied static electromagnetic field. Our
knowledge of nucleon polarisabilities and their generalization to non-zero
four-momentum transfer will be reviewed, including the presently ongoing
experiments and future perspectives.Comment: 20 pages, 12 figures. Minireview/Proceedings of "Many-Body Structure
of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 2011 . V2: typos
corrected. version to appear in EPJ Special Topic
Monte Carlo simulation of virtual Compton scattering below pion threshold
This paper describes the Monte Carlo simulation developed specifically for
the VCS experiments below pion threshold that have been performed at MAMI and
JLab. This simulation generates events according to the (Bethe-Heitler + Born)
cross section behaviour and takes into account all relevant
resolution-deteriorating effects. It determines the `effective' solid angle for
the various experimental settings which are used for the precise determination
of photon electroproduction absolute cross section.Comment: 24 pages, 6 figures, to be published in Nuclear Instruments and
Methods in Physics Research, A One author adde
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
Pion production in deeply virtual Compton scattering
Using a soft pion theorem based on chiral symmetry and a
resonance model we propose an estimate for the production cross section of low
energy pions in the deeply virtual Compton scattering (DVCS) process. In
particular, we express the processes in terms of
generalized parton distributions. We provide estimates of the contamination of
the DVCS observables due to this associated pion
production processes when the experimental data are not fully exclusive, for a
set of kinematical conditions representative of present or planned experiments
at JLab, HERMES and COMPASS.Comment: 50 pages, 22 figure
First Measurement of Chiral Dynamics in \pi^- \gamma -> \pi^- \pi^- \pi^+
The COMPASS collaboration at CERN has investigated the \pi^- \gamma -> \pi^-
\pi^- \pi^+ reaction at center-of-momentum energy below five pion masses,
sqrt(s) < 5 m(\pi), embedded in the Primakoff reaction of 190 GeV pions
impinging on a lead target. Exchange of quasi-real photons is selected by
isolating the sharp Coulomb peak observed at smallest momentum transfers, t' <
0.001 (GeV/c)^2. Using partial-wave analysis techniques, the scattering
intensity of Coulomb production described in terms of chiral dynamics and its
dependence on the 3\pi-invariant mass m(3\pi) = sqrt(s) were extracted. The
absolute cross section was determined in seven bins of with an
overall precision of 20%. At leading order, the result is found to be in good
agreement with the prediction of chiral perturbation theory over the whole
energy range investigated.Comment: 10 pages, 5 figure
Resonance Production and S-wave in at 190 GeV/c
The COMPASS collaboration has collected the currently largest data set on
diffractively produced final states using a negative pion
beam of 190 GeV/c momentum impinging on a stationary proton target. This data
set allows for a systematic partial-wave analysis in 100 bins of three-pion
mass, GeV/c , and in 11 bins of the reduced
four-momentum transfer squared, (GeV/c) . This
two-dimensional analysis offers sensitivity to genuine one-step resonance
production, i.e. the production of a state followed by its decay, as well as to
more complex dynamical effects in nonresonant production. In this paper,
we present detailed studies on selected partial waves with , , , , and . In these waves, we observe
the well-known ground-state mesons as well as a new narrow axial-vector meson
decaying into . In addition, we present the results
of a novel method to extract the amplitude of the subsystem with
in various partial waves from the
data. Evidence is found for correlation of the and
appearing as intermediate isobars in the decay of the known
and .Comment: 96 page
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS
The longitudinal polarisation transfer from muons to lambda and anti-lambda
hyperons, D_LL, has been studied in deep inelastic scattering off an
unpolarised isoscalar target at the COMPASS experiment at CERN. The spin
transfers to lambda and anti-lambda produced in the current fragmentation
region exhibit different behaviours as a function of x and xF . The measured x
and xF dependences of D^lambda_LL are compatible with zero, while
D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The
resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and
D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the
frame of recent model calculations.Comment: 13 pages, 7 figure
Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson
Lab using the exclusive photon electroproduction reaction (e p --> e p gamma).
This paper gives a detailed account of the analysis which has led to the
determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the
electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and
beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76
GeV^2. These data, together with the results of VCS experiments at lower
momenta, help building a coherent picture of the electric and magnetic GPs of
the proton over the full measured Q^2-range, and point to their non-trivial
behavior.Comment: version 2: modified according to PRC Editor's and Referee's
recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28
pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.
- …