291 research outputs found

    Un-rooted grafted cuttings for eggplant plug-transplant production and shipping: simulated transportation and healing requirements

    Get PDF
    Vegetable grafting is one of the most effective eco-friendly techniques to overcome pests and soilborne diseases in modern cropping systems of fruiting vegetables. Due to the increased farmers’ preference for grafted seedlings of high quality and better performance, the use of vegetable grafted plants is rapidly spreading and expanding over the world and intensive researches on new commercial production systems are under way. However, in many areas of the world, due to the high cost of skilled manpower, the use of grafted plug plants is still limited causing a relatively slow development of the grafting nursery industry. The aim of this work was to evaluate a possible use of un-rooted grafted cuttings as means of propagation and distribution of eggplant transplants. In this experiment, un-rooted grafted eggplant cuttings (‘Birgah’ eggplant scion with Solanum torvum rootstock) harvested after diverse healing times [0 (DIH 0), 1 (DIH 1), 3 (DIH 3), 5 (DIH 5), or 7 (DIH 7) days in healing] were exposed to 20, 14 and 8°C ‘simulated transportation temperature’ and dark condition in a growth chamber for 72 hours. After 72 hours of the simulated transportation treatment, all un‐rooted grafted cuttings were transferred into the greenhouse for rooting. The results showed that S. torvum is a suitable rootstock for applying the un-rooted grafted cutting propagation technique. All grafted cuttings reached the grafting success (100%) and all un-rooted grafted cuttings developed roots at the end of the rooting stage (100%). Regardless of the simulated shipping conditions, the treatment DIH 0 gave the best results in terms of number of leaves after rooting (3.8 leaves), shoot fresh and dry weight after 7 days of growth (3.92 and 0.46 g, respectively), fresh weight of the roots (1.34 g), and plantlet visual quality of the finished plug transplants (8.8). This innovative production/ shipping method might be successfully used in areas where local nurseries do not have high grafting ability

    Adhesive root hairs facilitate Posidonia oceanica seedling settlement on rocky substrates

    Get PDF
    Posidonia oceanica, the dominant Mediterranean seagrass, has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. During more than 10 years of direct observations, we noticed that P. oceanica seedlings were often firmly anchored to rocky reefs, even at exposed sites. Thus, we analysed the ultrastructural features of seedling root systems to identify specific traits that may represent adaptations for early seedling anchorage on rocky bottoms. Subapical sections of adventitious roots were obtained from 2-3 months old specimens collected in the field and were observed at SEM revealing an extensive coverage of adhesive root hairs with a maximum length of 2400 ÎŒm. Hairs were provided with an enlarged tips with a maximum width of 78.3 ÎŒm, which extended the contact area between the hair tip and the substrate. To test whether adhesive root hairs may facilitate P. oceanica seedlings establishment on rocky substrates, a manipulative experiment was performed. 360 seedlings were reared for 5 months in a land-based culture facility under simulated natural hydrodynamic conditions to identify suitable substrates for early seedling anchorage. Two main substrate features were investigated: firmness (i.e., sand vs. rock) and complexity (i.e., size of interstitial spaces between rocks). Anchorage was strongly influenced by substrate firmness and occurred only on rocks through adhesion by sticky root hairs. Percentage of anchored seedlings on rocks was as high as 89%. The minimum force required to dislodge plantlets attached to rocky substrates reached 23.8 N, which would potentially allow many plantlets to overcome winter storms in the field. The ability of rocky substrates to retain seedlings increased with their complexity. The interstitial spaces between rocks provided appropriate microsites for seedling settlement, as seeds were successfully retained and a suitable substrate for anchorage was available. Adhesive root hairs allowed fast and strong seedling anchorage to consolidated substrates when the root system was not yet developed. This mechanism could favour plant recruitment on rocky substrates with respect to mobile ones, in contrast with traditional paradigms. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features

    Rheology of a confined granular material

    Full text link
    We study the rheology of a granular material slowly driven in a confined geometry. The motion is characterized by a steady sliding with a resistance force increasing with the driving velocity and the surrounding relative humidity. For lower driving velocities a transition to stick-slip motion occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose a model to explain this behavior pointing out the leading role of friction properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR

    The Maximal Denumerant of a Numerical Semigroup

    Full text link
    Given a numerical semigroup S = and n in S, we consider the factorization n = c_0 a_0 + c_1 a_1 + ... + c_t a_t where c_i >= 0. Such a factorization is maximal if c_0 + c_1 + ... + c_t is a maximum over all such factorizations of n. We provide an algorithm for computing the maximum number of maximal factorizations possible for an element in S, which is called the maximal denumerant of S. We also consider various cases that have connections to the Cohen-Macualay and Gorenstein properties of associated graded rings for which this algorithm simplifies.Comment: 13 Page

    Slow dynamics and aging of a confined granular flow

    Full text link
    We present experimental results on slow flow properties of a granular assembly confined in a vertical column and driven upwards at a constant velocity V. For monodisperse assemblies this study evidences at low velocities (1<V<100ÎŒm/s1<V<100 \mu m/s) a stiffening behaviour i.e. the stress necessary to obtain a steady sate velocity increases roughly logarithmically with velocity. On the other hand, at very low driving velocity (V<1ÎŒm/sV<1 \mu m/s), we evidence a discontinuous and hysteretic transition to a stick-slip regime characterized by a strong divergence of the maximal blockage force when the velocity goes to zero. We show that all this phenomenology is strongly influenced by surrounding humidity. We also present a tentative to establish a link between the granular rheology and the solid friction forces between the wall and the grains. We base our discussions on a simple theoretical model and independent grain/wall tribology measurements. We also use finite elements numerical simulations to confront experimental results to isotropic elasticity. A second system made of polydisperse assemblies of glass beads is investigated. We emphasize the onset of a new dynamical behavior, i.e. the large distribution of blockage forces evidenced in the stick-slip regime

    Aging in humid granular media

    Full text link
    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper.Comment: 7 pages, 9 figure

    Vortex Motion Noise in Micrometre-Sized Thin Films of the Amorphous Nb0.7Ge0.3 Weak-Pinning Superconductor

    Get PDF
    We report high-resolution measurements of voltage (V) noise in the mixed state of micrometre-sized thin films of amorphous Nb0.7Ge0.3, which is a good representative of weak-pinning superconductors. There is a remarkable difference between the noise below and above the irreversibility field Birr. Below Birr, in the presence of measurable pinning, the noise at small applied currents resembles shot noise, and in the regime of flux flow at larger currents decreases with increasing voltage due to a progressive ordering of the vortex motion. At magnetic fields B between Birr and the upper critical field Bc2 flux flow is present already at vanishingly small currents. In this regime the noise scales with (1-B/Bc2)^2 V^2 and has a frequency (f) spectrum of 1/f type. We interpret this noise in terms of the properties of strongly driven depinned vortex systems at high vortex density.Comment: 8 pages, 5 figures, version accepted for publication in PR

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.
    • 

    corecore