2,437 research outputs found

    A new multiparametric topological method for determining the primary cosmic ray mass composition in the knee energy region

    Full text link
    The determination of the primary cosmic ray mass composition from the characteristics of extensive air showers (EAS), obtained at an observation level in the lower half of the atmosphere, is still an open problem. In this work we propose a new method of the Multiparametric Topological Analysis and show its applicability for the determination of the mass composition of the primary cosmic rays at the PeV energy region.Comment: 8 pages, 4 figures, talk given at Vulcano 2004 Workshop 'Frontier Objects in Physics and Astrophysics', Vulcano, Italy, 24-29.05.04, to be published in the Proceedings of the Worksho

    Precise determination of muon and electromagnetic shower contents from shower universality property

    Full text link
    We consider two new aspects of Extensive Air Shower development universality allowing to make accurate estimation of muon and electromagnetic (EM) shower contents in two independent ways. In the first case, to get muon (or EM) signal in water Cherenkov tanks or in scintillator detectors it is enough to know the vertical depth of shower maximum and the total signal in the ground detector. In the second case, the EM signal can be calculated from the primary particle energy and the zenith angle. In both cases the parametrizations of muon and EM signals are almost independent on primary particle nature, energy and zenith angle. Implications of the considered properties for mass composition and hadronic interaction studies are briefly discussed. The present study is performed on 28000 of proton, oxygen and iron showers, generated with CORSIKA 6.735 for E−1E^{-1} spectrum in the energy range log(E/eV)=18.5-20.0 and uniformly distributed in cos^2(theta) in zenith angle interval theta=0-65 degrees for QGSJET II/Fluka interaction models.Comment: Submitted to Phys. Rev.

    Comparison between methods for the determination of the primary cosmic ray mass composition from the longitudinal profile of atmospheric cascades

    Get PDF
    The determination of the primary cosmic ray mass composition from the longitudinal development of atmospheric cascades is still a debated issue. In this work we discuss several data analysis methods and show that if the entire information contained in the longitudinal profile is exploited, reliable results may be obtained. Among the proposed methods FCC ('Fit of the Cascade Curve'), MTA ('Multiparametric Topological Analysis') and NNA ('Neural Net Analysis') with conjugate gradient optimization algorithm give the best accuracy.Comment: 22 pages, 11 figures, accepted by Astroparticle Physics, minor misprints and an extra figure remove

    Perimeter of sublevel sets in infinite dimensional spaces

    Full text link
    We compare the perimeter measure with the Airault-Malliavin surface measure and we prove that all open convex subsets of abstract Wiener spaces have finite perimeter. By an explicit counter-example, we show that in general this is not true for compact convex domains

    Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients

    Full text link
    In this paper we give an affirmative answer to an open question mentioned in [Le Bris and Lions, Comm. Partial Differential Equations 33 (2008), 1272--1317], that is, we prove the well-posedness of the Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients.Comment: 11 pages. The proof has been modifie

    2-D constrained Navier-Stokes equation and intermediate asymptotics

    Full text link
    We introduce a modified version of the two-dimensional Navier-Stokes equation, preserving energy and momentum of inertia, which is motivated by the occurrence of different dissipation time scales and related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics. The analysis we present here is purely formal. A rigorous study of this equation will be done in a forthcoming paper

    A new method for the UHECR mass composition studies

    Get PDF
    The detemination of the primary cosmic ray mass composition from the longitudinal development of atmospheric cascades is still an open problem. In this work we propose a new method of the multiparametric topological analysis and show that if both Xmax_{max} - the depth of shower maximum and Nmax_{max} - the number of charged particles in the shower maximum are used, reliable results can be obtained.Comment: 6 pages, 4 figures, talk given at CRIS2004 Cosmic Ray International Seminar 'GZK and Surroundings', 31.05-4.06.04, Catania, Italy, to be published in Nucl.Phys.B (Proc.Suppl.

    Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces

    Get PDF
    Tin-halide perovskites (THPs) have emerged as promising lead-free perovskites for photovoltaics and photocatalysis applications but still fall short in terms of stability and efficiency with respect to their lead-based counterpart. A detailed understanding of the degradation mechanism of THPs in a water environment is missing. This Letter presents ab initio molecular dynamics (AIMD) simulations to unravel atomistic details of THP/water interfaces comparing methylammonium tin iodide, MASnI3, with the lead-based MAPbI3. Our results reveal facile solvation of surface tin-iodine bonds in MASnI3, while MAPbI3remains more robust to degradation despite a larger amount of adsorbed water molecules. Additional AIMD simulations on dimethylammonium tin bromide, DMASnBr3, investigate the origins of their unprecedented water stability. Our results indicate the presence of amorphous surface layers of hydrated zero-dimensional SnBr3complexes which may protect the inner structure from degradation and explain their success as photocatalysts. We believe that the atomistic details of the mechanisms affecting THP (in-)stability may inspire new strategies to stabilize THPs

    Towards a Hand Exoskeleton for a Smart EVA Glove

    Get PDF
    In this paper we investigate the key factors associated with the realization of a hand exoskeleton that could be embedded in an astronaut glove for EVA (Extra Vehicular Activities). Such a project poses several and varied problems, mainly due to the complex structure of the human hand and to the extreme environment in which the glove operates. This work provides an overview of existing exoskeletons and their related technologies and lays the ground for the forthcoming prototype realization, by presenting a preliminary analysis of possible solutions in terms of mechanical structure, actuators and sensors
    • 

    corecore