75 research outputs found

    The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1+ Cells

    Full text link
    Inhibition of the prolyl-4-hydroxylase domain (PHD) enzymes, leading to the stabilization of hypoxia-inducible factor (HIF) α as well as to the stimulation of erythropoietin (Epo) synthesis, is the functional mechanism of the new anti-anemia drug roxadustat. Little is known about the effects of roxadustat on the Epo-producing cell pool. To gain further insights into the function of PHD inhibitors, we characterized the abundance of mesenchymal stem cell (MSC)-like cells after roxadustat treatment of mice. The number of Sca-1+ mesenchymal cells following roxadustat treatment increased exclusively in the kidneys. Isolated Sca-1+ cells demonstrated typical features of MSC-like cells, including adherence to tissue culture plates, trilineage differentiation potential, and expression of MSC markers. Kidney-derived Sca-1+ MSC-like cells were cultured for up to 21 days. Within the first few days in culture, cells stabilized HIF-1α and HIF-2α and temporarily increased Epo production upon incubation in hypoxia. In summary, we have identified a Sca-1+ MSC-like cell population that is involved in renal Epo production and might contribute to the strong anti-anemic effect of the PHD inhibitor roxadustat

    Cargo-specific effects of hypoxia on clathrin-mediated trafficking

    Get PDF
    Clathrin-associated trafficking is a major mechanism for intracellular communication, as well as for cells to communicate with the extracellular environment. A decreased oxygen availability termed hypoxia has been described to influence this mechanism in the past. Mostly biochemical studies were applied in these analyses, which miss spatiotemporal information. We have applied live cell microscopy and a newly developed analysis script in combination with a GFP-tagged clathrin-expressing cell line to obtain insight into the dynamics of the effect of hypoxia. Number, mobility and directionality of clathrin-coated vesicles were analysed in non-stimulated cells as well as after stimulation with epidermal growth factor (EGF) or transferrin in normoxic and hypoxic conditions. These data reveal cargo-specific effects, which would not be observable with biochemical methods or with fixed cells and add to the understanding of cell physiology in hypoxia. The stimulus-dependent consequences were also reflected in the final cellular output, i.e. decreased EGF signaling and in contrast increased iron uptake in hypoxia.</p

    Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin‐producing cells

    Full text link
    In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo-producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP-derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell-like state, with strongly enhanced hypoxia-inducible factor 2 (HIF-2α), stem cell antigen 1 (SCA-1), and CD133 expression, but also enhanced alpha-smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on-off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type

    Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium

    Get PDF
    Redox signaling affects all aspects of cardiac function and homeostasis. With the development of genetically encoded fluorescent redox sensors, novel tools for the optogenetic investigation of redox signaling have emerged. Here, we sought to develop a human heart muscle model for in-tissue imaging of redox alterations. For this, we made use of (1) the genetically-encoded Grx1-roGFP2 sensor, which reports changes in cellular glutathione redox status (GSH/GSSG), (2) human embryonic stem cells (HES2), and (3) the engineered heart muscle (EHM) technology. We first generated HES2 lines expressing Grx1-roGFP2 in cytosol or mitochondria compartments by TALEN-guided genomic integration. Grx1-roGFP2 sensor localization and function was verified by fluorescence imaging. Grx1-roGFP2 HES2 were then subjected to directed differentiation to obtain high purity cardiomyocyte populations. Despite being able to report glutathione redox potential from cytosol and mitochondria, we observed dysfunctional sarcomerogenesis in Grx1-roGFP2 expressing cardiomyocytes. Conversely, lentiviral transduction of Grx1-roGFP2 in already differentiated HES2-cardiomyocytes and human foreskin fibroblast was possible, without compromising cell function as determined in EHM from defined Grx1-roGFP2-expressing cardiomyocyte and fibroblast populations. Finally, cell-type specific GSH/GSSG imaging was demonstrated in EHM. Collectively, our observations suggests a crucial role for redox signaling in cardiomyocyte differentiation and provide a solution as to how this apparent limitation can be overcome to enable cell-type specific GSH/GSSG imaging in a human heart muscle context

    Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

    Get PDF
    Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3

    Impaired Ca2+-handling in HIF-1α+/− mice as a consequence of pressure overload

    Get PDF
    The hypoxia-inducible factor (HIF)-1 is critically involved in the cellular adaptation to a decrease in oxygen availability. The influence of HIF-1α for the development of cardiac hypertrophy and cardiac function that occurs in response to sustained pressure overload has been mainly attributed to a challenged cardiac angiogenesis and cardiac hypertrophy up to now. Hif-1α+/+ and Hif-1α+/− mice were studied regarding left ventricular hypertrophy and cardiac function after being subjected to transverse aortic constriction (TAC). After TAC, both Hif-1α+/+ and Hif-1α+/− mice developed left ventricular hypertrophy with increased posterior wall thickness, septum thickness and increased left ventricular weight to a similar extent. No significant difference in cardiac vessel density was observed between Hif-1α+/+ and Hif-1α+/− mice. However, only the Hif-1α+/− mice developed severe heart failure as revealed by a significantly reduced fractional shortening mostly due to increased end-systolic left ventricular diameter. On the single cell level this correlated with reduced myocyte shortenings, decreased intracellular Ca2+-transients and SR-Ca2+ content in myocytes of Hif-1a+/− mice. Thus, HIF-1α can be critically involved in the preservation of cardiac function after chronic pressure overload without affecting cardiac hypertrophy. This effect is mediated via HIF-dependent modulation of cardiac calcium handling and contractility

    Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen

    Get PDF
    SummaryBoth hypoxic and inflammatory conditions activate transcription factors such as hypoxia-inducible factor (HIF)-1α and nuclear factor (NF)-ÎșB, which play a crucial role in adaptive responses to these challenges. In dendritic cells (DC), lipopolysaccharide (LPS)-induced HIF1α accumulation requires NF-ÎșB signaling and promotes inflammatory DC function. The mechanisms that drive LPS-induced HIF1α accumulation under normoxia are unclear. Here, we demonstrate that LPS inhibits prolyl hydroxylase domain enzyme (PHD) activity and thereby blocks HIF1α degradation. Of note, LPS-induced PHD inhibition was neither due to cosubstrate depletion (oxygen or α-ketoglutarate) nor due to increased levels of reactive oxygen species, fumarate, and succinate. Instead, LPS inhibited PHD activity through NF-ÎșB-mediated induction of the iron storage protein ferritin and subsequent decrease of intracellular available iron, a critical cofactor of PHD. Thus, hypoxia and LPS both induce HIF1α accumulation via PHD inhibition but deploy distinct molecular mechanisms (lack of cosubstrate oxygen versus deprivation of co-factor iron)

    Hot worms can handle heavy metal.

    No full text
    • 

    corecore