22 research outputs found

    Strahlenschutzphysik

    No full text

    Determination of the calibration factor of polysulphone film UV dosemeters for terrestrial solar radiation.

    No full text
    Polysulphone film is used as a personal UV dosemeter in dermatological or epidemiological studies. The relative efficiency of this detector does not exactly match the action spectrum as proposed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and to which the UV dose and exposure limits refer. Therefore, the calibration of the dosemeter depends on the spetrum. In the present paper the variation of the calibration factor for terrestrial solar UV spectra is analysed on the basis of a two year observation period at a site near Munich. Germany. A detailed error estimation is included. It is shown that the variation of the calibration factor within this class of spectra is the main contribution to the total uncertainty of the dose determination, which can be up to 40%. The shape of the spectrum of terrestrial solar UV radiation is mainly determined by the total ozone column and the solar elevation angle. It is shown how the calibration depends on these two parameters and how this additional information can help to reduce the measurement error to a residual uncertainty of 17%. Exposure studies of terrestrial solar UV radiation using polysulphone film as a dosemeter would gain in accuracy if total ozone column values at the study's site could be measured or taken from satellite or weather service data. The interpretation of the magnitude of the dose uncertainty depends on the further use of these data

    Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    No full text
    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7 centre dot 10 sup 3 ions/cm sup 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 mu m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the developed 'track-by-track' method can be used effectively for description of the sequential appearance of individual pores in an electrolytic etching proces
    corecore