49 research outputs found

    Learning Joint Detection, Equalization and Decoding for Short-Packet Communications

    Full text link
    We propose and practically demonstrate a joint detection and decoding scheme for short-packet wireless communications in scenarios that require to first detect the presence of a message before actually decoding it. For this, we extend the recently proposed serial Turbo-autoencoder neural network (NN) architecture and train it to find short messages that can be, all "at once", detected, synchronized, equalized and decoded when sent over an unsynchronized channel with memory. The conceptional advantage of the proposed system stems from a holistic message structure with superimposed pilots for joint detection and decoding without the need of relying on a dedicated preamble. This results not only in higher spectral efficiency, but also translates into the possibility of shorter messages compared to using a dedicated preamble. We compare the detection error rate (DER), bit error rate (BER) and block error rate (BLER) performance of the proposed system with a hand-crafted state-of-the-art conventional baseline and our simulations show a significant advantage of the proposed autoencoder-based system over the conventional baseline in every scenario up to messages conveying k = 96 information bits. Finally, we practically evaluate and confirm the improved performance of the proposed system over-the-air (OTA) using a software-defined radio (SDR)-based measurement testbed.Comment: Submitted to IEEE TCO

    Deep Learning for Uplink CSI-based Downlink Precoding in FDD massive MIMO Evaluated on Indoor Measurements

    Full text link
    When operating massive multiple-input multiple-output (MIMO) systems with uplink (UL) and downlink (DL) channels at different frequencies (frequency division duplex (FDD) operation), acquisition of channel state information (CSI) for downlink precoding is a major challenge. Since, barring transceiver impairments, both UL and DL CSI are determined by the physical environment surrounding transmitter and receiver, it stands to reason that, for a static environment, a mapping from UL CSI to DL CSI may exist. First, we propose to use various neural network (NN)-based approaches that learn this mapping and provide baselines using classical signal processing. Second, we introduce a scheme to evaluate the performance and quality of generalization of all approaches, distinguishing between known and previously unseen physical locations. Third, we evaluate all approaches on a real-world indoor dataset collected with a 32-antenna channel sounder
    corecore