6 research outputs found

    Endocranial morphology of the extinct Antillean shrew Nesophontes (Lipotyphla: Nesophontidae) from natural and digital endocasts of Cuban taxa

    Get PDF
    This paper documents and describes fossil microbial structures inferred to be of algal/bacterial origin in the Upper Cretaceous Agua Nueva Formation in the Xilitla area (San Luis Potosi, Mexico), located in the southern part of the Tampico-Misantla basin. The sequence consists of alternating decimeter-thick beds of limestone with occasional brown shale and green bentonite layers. The limeston also include intermittent beds of black chert. The sedimentary succession shows two calcareous facies: 1) dark laminated limestones containing fossil remains of holosteans, teleosteans and shark teeth, as well as lenticular layers of sedimentary pyrite, and high content of organic matter (Corg 1 ‒ 8 wt%); and 2) gray, non-laminated, bioturbated limestones with low content of organic matter (Corg \u3c 1.0 wt%). Petrographic and scanning electron microscope analyses of the laminated limestone reveal a micritic matrix with sub-parallel wavy lamination, continuous and discontinuous folded laminae with shreds of organic matter, as well as different kinds of filaments, coated grains and planktonic foraminifera. On the other hand, the non-laminated, bioturbated limestone comprises infrequent filaments and pyrite. Both textures and biomorphic structures are very similar to those previously described for ancient and recent sediments representative of microbial origin. Furthermore, the occurrence of filaments embedded in the organic-matter-rich laminae suggests in situ production related to benthic microbial activity. Concurrence of lamination due to the absence of bioturbation, pervasive framboidal pyrite, and the high concentration of organic matter in the laminated limestones are consistent with persistent dysoxic/anoxic conditions, whereas the bioturbated limestones might represent recurrent relatively well-oxygenated episodes. The presence of the planktonic foraminifera Rotalipora cushmani concomitant with Inoceramus labiatus indicates a time interval from the Late Cenomanian to the Earliest Turonian for the Agua Nueva Formation at Xilitla, thus indicating that this interval of intermittent severe oxygen deficient conditions is coeval with the global Oceanic Anoxic Event 2 (OAE-2)

    Laboratory-Scale Biodegradation of Fuel Oil No. 6 in Contaminated Soils by Autochthonous Bacteria

    Get PDF
    In order to evaluate the degradation of fuel oil no. 6 (FO6) in contaminated soil, laboratory-scale bioreactors were set up to study biostimulation, bioaugmentation, and natural attenuation processes. A solution of fertilizers was added in biostimulation and biouagmentation (0.03% N, 0.01% P). To the bioaugmentation process, an enrichment culture of indigenous hydrocarbon-degrading microorganisms was also added once a week. Total aerobic and hydrocarbon-degrading microorganisms were determined by plate count, and total petroleum hydrocarbon (TPH) concentration was determined gravimetrically (EPA method 9071b) every 15 days. After 1 year of study, degradation rate was higher for biostimulation (0.19 g TPH/day), followed by natural attenuation (0.18 g TPH/day) and bioaugmentation (0.16 g TPH/day). TPH showed a change in composition of hydrocarbons, attributed to microbiological activity. Microbial counts of hydrocarbon-degrading microorganisms were on the range of 4–6 log CFU/g soil. Preliminary bacterial identification corresponded to Pseudomonas, Rhodococcus, Actinomyces, and Bacillus strains; randomly amplified polymorphic DNA (RAPD); and denaturing gradient gel electrophoresis (DGGE) analysis demonstrated a large microbial diversity. From the degradation rates, it can be predicted that such limits will be achieved by increasing further 107–117 days of the treatments. Results demonstrated to be efficient on the restoration of contaminated soil, being an alternative to treat soils contaminated with heavy hydrocarbons

    Understanding the Biosynthetic Changes that Give Origin to the Distinctive Flavor of Sotol: Microbial Identification and Analysis of the Volatile Metabolites Profiles During Sotol (Dasylirion sp.) Must Fermentation

    Full text link
    In northern Mexico, the distilled spirit sotol with a denomination of origin is made from species of Dasylirion. The configuration of the volatile metabolites produced during the spontaneous fermentation of Dasylirion sp. must is insufficiently understood. In this study, the aim was to investigate the composition of the microbial consortia, describe the variation of volatile metabolites, and relate such profiles with their particular flavor attributes during the fermentation of sotol (Dasylirion sp.) must. Ascomycota was the phylum of most strains identified with 75% of total abundance. The genus of fermenting yeasts constituted of 101 Pichia strains and 13 Saccharomyces strains. A total of 57 volatile metabolites were identified and grouped into ten classes. The first stage of fermentation was composed of diesel, green, fruity, and cheesy attributes due to butyl 2-methylpropanoate, octan-1-ol, ethyl octanoate, and butanal, respectively, followed by a variation to pungent and sweet descriptors due to 3-methylbutan-1-ol and butyl 2-methylpropanoate. The final stage was described by floral, ethereal-winey, and vinegar attributes related to ethyl ethanimidate, 2-methylpropan-1-ol, and 2-hydroxyacetic acid. Our results improve the knowledge of the variations of volatile metabolites during the fermentation of sotol must and their contribution to its distinctive flavor

    Characterization of a Microbial Consortium for the Bioremoval of Polycyclic Aromatic Hydrocarbons (PAHs) in Water

    Full text link
    Pollution of freshwater ecosystems from polycyclic aromatic hydrocarbons (PAHs) is a global concern. The US Environmental Protection Agency (EPA) has included the PAHs pyrene, phenanthrene, and naphthalene among the 16 priority compounds of special concern for their toxicological effects. The aim of this study was to adapt and characterize a microbial consortium from ore waste with the potential to remove these three PAHs from water. This microbial consortium was exposed to the target PAHs at levels of 5, 10, 20, 50, and 100 mg L−1 for 14 days. PAH bioremoval was measured using the analytical technique of solid phase microextraction, followed by gas chromatography mass spectrometry (SPME-GC/MS). The results revealed that up to 90% of the target PAHs can be removed from water after 14 days at a concentration level of 100 mg L−1. The predominant group of microorganisms identified at the phylum taxonomic level were the Proteobacteria, while the Actinobacteria were the predominant subgroup. The removal of phenanthrene, naphthalene, and pyrene predominantly occurred in specimens of genera Stenotrophomonas, Williamsia, and Chitinophagaceae, respectively. This study demonstrates that the use of specific microorganisms is an alternative method of reducing PAH levels in water

    Levels and Distribution of Pollutants in the Waters of an Aquatic Ecosystem in Northern Mexico

    Full text link
    The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ∑DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops

    Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico

    Full text link
    Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks
    corecore