22 research outputs found

    Comprehensive functional characterization of SGCB coding variants predicts pathogenicity in limb-girdle muscular dystrophy type R4/2E

    Get PDF
    Genetic testing is essential for patients with a suspected hereditary myopathy. More than 50% of patients clinically diagnosed with a myopathy carry a variant of unknown significance in a myopathy gene, often leaving them without a genetic diagnosis. Limb-girdle muscular dystrophy (LGMD) type R4/2E is caused by mutations in β-sarcoglycan (SGCB). Together, β-, α-, γ-, and δ-sarcoglycan form a 4-protein transmembrane complex (SGC) that localizes to the sarcolemma. Biallelic loss-of-function mutations in any subunit can lead to LGMD. To provide functional evidence for the pathogenicity of missense variants, we performed deep mutational scanning of SGCB and assessed SGC cell surface localization for all 6,340 possible amino acid changes. Variant functional scores were bimodally distributed and perfectly predicted pathogenicity of known variants. Variants with less severe functional scores more often appeared in patients with slower disease progression, implying a relationship between variant function and disease severity. Amino acid positions intolerant to variation mapped to points of predicted SGC interactions, validated in silico structural models, and enabled accurate prediction of pathogenic variants in other SGC genes. These results will be useful for clinical interpretation of SGCB variants and improving diagnosis of LGMD; we hope they enable wider use of potentially life-saving gene therapy

    Different Approaches to Analyze Muscle Fat Replacement With Dixon MRI in Pompe Disease

    Get PDF
    Altres ajuts: Asociación Española de Enfermos de Glucogenosis (AEEG)Quantitative MRI is an increasingly used method to monitor disease progression in muscular disorders due to its ability to measure changes in muscle fat content (reported as fat fraction) over a short period. Being able to objectively measure such changes is crucial for the development of new treatments in clinical trials. However, the analysis of the images involved continues to be a daunting task because of the time needed. Whether a more specific analysis selecting individual muscles or a global one analyzing the whole thigh or compartments could be a suitable alternative has only been marginally studied. In our study we compare three methods of analysis of 2-point-dixon images in a cohort of 34 patients with late onset Pompe disease followed over a period of one year. We measured fat fraction on MRIs obtained at baseline and at year 1, and we calculated the increment of fat fraction. We correlated the results obtained with the results of muscle function tests to investigate whether the three methods of analysis were equivalent or not. We observed significant differences between the three methods in the estimation of the fat fraction at both baseline and year 1, but no difference was found in the increment in fat fraction between baseline and year 1. When we correlated the fat fraction obtained with each method and the muscle function tests, we found a significant correlation with most tests in all three methods, although in most comparisons the highest correlation coefficient was found with the analysis of individual muscles. We conclude that the fastest strategy of analysis assessing compartments or the whole thigh could be reliable for certain cohorts of patients where the variable to study is the fat increment. In other sorts of studies, an individual muscle approach seems the most reliable technique

    Isolation of human fibroadipogenic progenitors and satellite cells from frozen muscle biopsies

    Get PDF
    Altres ajuts: Association Française contre les Myopathies (22525)Altres ajuts: Fundación Isabel GemioSkeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss

    Platelet Derived Growth Factor-AA Correlates With Muscle Function Tests and Quantitative Muscle Magnetic Resonance in Dystrophinopathies

    Get PDF
    Introduction: Duchenne (DMD) and Becker (BMD) muscular dystrophy are X-linked muscular disorders produced by mutations in the DMD gene which encodes the protein dystrophin. Both diseases are characterized by progressive involvement of skeletal, cardiac, and respiratory muscles. As new treatment strategies become available, reliable biomarkers and outcome measures that can monitor disease progression are needed for clinical trials.Methods: We collected clinical and functional data and blood samples from 19 DMD patients, 13 BMD patients, and 66 healthy controls (8 pediatric and 58 adult controls), and blood samples from 15 patients with dysferlinopathy (DYSF) and studied the serum concentration of 4 growth factors involved in the process of muscle fibrosis. We correlated the serum concentration of these growth factors with several muscle function tests, spirometry results and fat fraction identified by quantitative Dixon muscle MRI.Results: We found significant differences in the serum concentration of Platelet Derived Growth Factor-AA (PDGF-AA) between DMD patients and pediatric controls, in Connective Tissue Growth Factor (CTGF) between BMD patients and adult controls, and in and Transforming Growth Factor- β1 (TGF-β1) between BMD and DYSF patients. PDGF-AA showed a good correlation with several muscle function tests for both DMD and BMD patients and with thigh fat fraction in BMD patients. Moreover, PDGF-AA levels were increased in muscle biopsies of patients with DMD and BMD as was demonstrated by immunohistochemistry and Real-Time PCR studies.Conclusion: Our study suggests that PDGF-AA should be further investigated in a larger cohort of DMD and BMD patients because it might be a good biomarker candidate to monitor the progression of these diseases

    Late-onset thymidine kinase 2 deficiency: a review of 18 cases

    Get PDF
    Background: TK2 gene encodes for mitochondrial thymidine kinase, which phosphorylates the pyrimidine nucleosides thymidine and deoxycytidine. Recessive mutations in the TK2 gene are responsible for the ‘myopathic form’ of the mitochondrial depletion/multiple deletions syndrome, with a wide spectrum of severity. Methods: We describe 18 patients with mitochondrial myopathy due to mutations in the TK2 gene with absence of clinical symptoms until the age of 12. Results: The mean age of onset was 31 years. The first symptom was muscle limb weakness in 10/18, eyelid ptosis in 6/18, and respiratory insufficiency in 2/18. All patients developed variable muscle weakness during the evolution of the disease. Half of patients presented difficulty in swallowing. All patients showed evidence of respiratory muscle weakness, with need for non-invasive Mechanical Ventilation in 12/18. Four patients had deceased, all of them due to respiratory insufficiency. We identified common radiological features in muscle magnetic resonance, where the most severely affected muscles were the gluteus maximus, semitendinosus and sartorius. On muscle biopsies typical signs of mitochondrial dysfunction were associated with dystrophic changes. All mutations identified were previously reported, being the most frequent the in-frame deletion p.Lys202del. All cases showed multiple mtDNA deletions but mtDNA depletion was present only in two patients. Conclusions: The late-onset is the less frequent form of presentation of the TK2 deficiency and its natural history is not well known. Patients with late onset TK2 deficiency have a consistent and recognizable clinical phenotype and a poor prognosis, due to the high risk of early and progressive respiratory insufficiency

    BNIP3 Is Involved in Muscle Fiber Atrophy in Late-Onset Pompe Disease Patients

    Get PDF
    Late-onset Pompe disease (LOPD) is a rare genetic disorder produced by mutations in the GAA gene and is characterized by progressive muscle weakness. LOPD muscle biopsies show accumulation of glycogen along with the autophagic vacuoles associated with atrophic muscle fibers. The expression of molecules related to muscle fiber atrophy in muscle biopsies of LOPD patients was studied using immunofluorescence and real-time PCR. BCL2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a well-known atrogene, was identified as a potential mediator of muscle fiber atrophy in LOPD muscle biopsies. Vacuolated fibers in LOPD patient muscle biopsies were smaller than nonvacuolated fibers and expressed BNIP3. The current data suggested that BNIP3 expression is regulated by inhibition of the AKT-mammalian target of rapamycin pathway, leading to phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 by AMP-activated protein kinase. Myoblasts and myotubes obtained from LOPD patients and age-matched controls were studied to confirm these results using different molecular techniques. Myotubes derived from LOPD patients were likewise smaller and expressed BNIP3. Conclusively, transfection of BNIP3 into control myotubes led to myotube atrophy. These findings suggest a cascade that starts with the inhibition of the AKT-mammalian target of rapamycin pathway and activation of BNIP3 expression, leading to progressive muscle fiber atrophy. These results open the door to potential new treatments targeting BNIP3 to reduce its deleterious effects on muscle fiber atrophy in Pompe disease.Peer reviewe

    PDGF-BB serum levels are decreased in adult onset Pompe patients

    Get PDF
    Adult onset Pompe disease is a genetic disorder characterized by slowly progressive skeletal and respiratory muscle weakness. Symptomatic patients are treated with enzymatic replacement therapy with human recombinant alfa glucosidase. Motor functional tests and spirometry are commonly used to follow patients up. However, a serological biomarker that correlates with the progression of the disease could improve follow-up. We studied serum concentrations of TGFβ, PDGF-BB, PDGF-AA and CTGF growth factors in 37 adult onset Pompe patients and 45 controls. Moreover, all patients performed several muscle function tests, conventional spirometry, and quantitative muscle MRI using 3-point Dixon. We observed a statistically significant change in the serum concentration of each growth factor in patients compared to controls. However, only PDGF-BB levels were able to differentiate between asymptomatic and symptomatic patients, suggesting its potential role in the follow-up of asymptomatic patients. Moreover, our results point to a dysregulation of muscle regeneration as an additional pathomechanism of Pompe disease

    Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness

    Get PDF
    Several hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology. Exome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions. We identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation. Using our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes

    Magnetization Transfer Ratio in Lower Limbs of Late Onset Pompe Patients Correlates With Intramuscular Fat Fraction and Muscle Function Tests

    Get PDF
    Objectives: Magnetization transfer (MT) imaging exploits the interaction between bulk water protons and protons contained in macromolecules to induce signal changes through a special radiofrequency pulse. MT detects muscle damage in patients with neuromuscular conditions, such as limb-girdle muscular dystrophies or Charcot-Marie-Tooth disease, which are characterized by progressive fiber loss and replacement by fatty tissue. In Pompe disease, in which there is, in addition, an accumulation of glycogen inside the muscle fibers, MT has not been tested yet. Our aim is to estimate MT ratio (MTR) in the skeletal muscle of these patients and correlate it with intramuscular fat fraction (FF) and results of muscle function tests.Methods: We obtained two-point axial Dixon and Dixon-MT sequences of the right thigh on a 1.5 Teslas MRI scanner in 60 individuals, including 29 late onset Pompe disease patients, 2 patients with McArdle disease, and 29 age and sex matched healthy controls. FF and MTR were estimated. Muscle function using several muscle function tests, including quantification of muscle strength, timed test quality of life scales, conventional spirometry obtaining forced vital capacity while sitting and in the supine position, were assessed in all patients.Results: MTR was significantly lower in Pompe patients compared with controls (45.5 ± 8.5 vs. 51.7 ± 2.3, Student T-test, p < 0.05). There was a negative correlation between the MTR and FF muscles studied (correlation coefficient: −0.65, Spearman test: p < 0.05). MTR correlated with most of the muscle function test results. We analyzed if there was any difference in MTR values between Pompe patients and healthy controls in those muscles that did not have an increase in fat, a measure that could be related to the presence of glycogen in skeletal muscles, but we did not identify significant differences except in the adductor magnus muscle (48.4 ± 3.6 in Pompe vs. 51 ± 1.3 in healthy controls, Student T-test = 0.023).Conclusions: MTR is a sensitive tool to identify muscle loss in patients with Pompe disease and shows a good correlation with muscle function tests. Therefore, the MT technique can be useful in monitoring muscle degeneration in Pompe disease in clinical trials or natural history studies
    corecore